

Ensemble Clustering to Generate Phenotypes of Kidney Transplant Donors and Recipients

<u>Syed Sibte Raza Abidi</u>, Kranthi Jalakam, Syed Hani Raza Abidi, Karthik Tennankore

Dalhousie University, Canada

Background

- Kidney transplantation is a treatment option for end-stage kidney disease
- Donor and recipient characteristics impact outcomes for kidney transplant
- Understanding the relationships between donor and recipient characteristics
- Understanding the relationships between donor and recipient characteristics and how they influence post transplant outcomes may have future implications for kidney allocation

Objectives and Approach

- To identify phenotypes of kidney transplant recipients using their clinical characteristics (inclusive of both donor and recipient features)
- To determine how these phenotypes influence graft survival.
- Investigate a dataset of kidney transplant donor and recipient characteristics
- Generate phenotypes by applying unsupervised clustering to multi-type data

Data

- Scientific Registry of Transplant Recipients (SRTR)—2009 to 2011
- 25,824 recipients of a deceased donor kidney transplant
- 28 numerical and categorical variables
- Recipient outcome (experienced graft failure, died or survived) not used

Methods

- Multi-type data clustering
 - Model based clustering: Mixture models and Kay-means for Mixed Large data (KAMILA)
 - Neural network clustering: Self Organizing Maps
- Ensemble clustering
- Cluster evaluation metrics
 - Silhouette score, Dunn index, Calinski-Harabasz score

Results – Base vs Ensemble Clustering

	Method	Silhouette Score (↑)	Dunn Index (↑)	CH Index (↑)	
	Base Clustering				
	KAMILA	0.108	0.0536	2760	
	Mixture model	0.091	0.0099	2514	
	Ensemble Clustering				
	k-modes	0.108	0.0200	2704	
	Majority Voting	0.076	0.0282	2065	
	Latent Class Analysis (LCA)	0.113	0.0538	2843	
	Validation Clustering				
@TheIns ⁻	Self-Organizing Map (SOM)	0.100	0.0512	2595	

Clustering Results

- Latent Class Analysis
 - Cluster 1:11472
 - Cluster 2: 9583
 - Cluster 3: 4769

#MEDINF023

@TheInstituteDH

- Self-Organizing Map
 - Cluster 1:12472
 - Cluster 2: 9443
 - Cluster 3: 3909

SOM

Cluster Validation

LCA

SOM

- 20

ġ.

2

dusterno

ż

i

- 20 - 10 - 0 - 35

25 - 20 - 15 - 10 - 5

ż

i

ż

dusterno

ż dusterno

i

Phenotype Feature	Cluster A (11,472)	Cluster B (9,583)	Cluster C (4,769)
Donor & Recipient Age	Youngest Donor & Recipient	Oldest Recipient	Oldest D & Older R than cluster A
Survival Time	Longest		Similar
Years on dialysis pre-transplant	Longer than cluster B	Shortest	Longest
Recipient Event	Highest censored	Highest Death	Highest Graft Loss
Recipient Death	Lowest	Highest	Higher than cluster A
ESRD Diagnosis	GN and HTN	Diabetes	GN and HTN
Recipient Diabetes	None	Almost entirely Yes	Mastly Na
Recipient Sex	Highest proportion of female sex	Lowest	Higher than cluster B
Recipient BMI	Higher presence between 18.49 and 29.99 than cluster B	Significantly higher >29.99 and lower >18.49 – 24.99	Similar to cluster A
Donor Hypertension	Almost None	Majority No with significant Yes	Almost entirely Yes
Expanded Criteria Donor	Almost None	Majority No with significant Yes	Highest Yes (~40%)
Donor Race	S	imilar	Highest proportion of black donors
Donor Diabetes	Almost None	Slightly higher than cluster A	Highest Yes
Donor BMI	Highest >18.49 - 24.99	Higher presence >29.99 than cluster A	Significantly higher >29.99 and lower >18.49 – 24.99

Concluding Remarks

- Phenotypes of kidney donors and recipients
 - Characterize anticipated outcomes for each cluster assignment
- Outcomes not used for cluster derivation
 - Clusters identify high risk phenotypes at differential risk of graft failure
- Multi-type data ensemble clustering approach
- Observed concordance between the clustering method provides a new strategy to validate cluster membership
- Generalizable to other organ transplant studies

@TheInstituteDH #MEDINF023

THANK YOU

@TheInstituteDH #MEDINF023