

atwitterhandle

Continuous Remote Patient Monitoring for Post-Discharge Heart Failure Management: Workflow Modeling using Discrete Event Simulation

Rema Padman, PhD, FAMIA

Trustees Professor Of Management Science And Healthcare Informatics The Heinz College of Information Systems & Public Policy Carnegie Mellon University, Pittsburgh, PA, USA; rpadman@cmu.edu

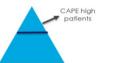
Co-authors: Anirudh V Venkatasubramanian, MS, Wei Ning Chi, MD, Anthony Solomonides, PhD, Nirav Shah, MD, MPH

Introduction: Heart Failure (HF) Significance

- Nearly 6.5 million adults in the US and > 64 million worldwide are diagnosed with HF
- HF results in large # of hospitalizations and up to 25% of cases result in readmissions and high costs to health systems and societies globally
- Cascade-HF project goals:
- To determine the feasibility of a continuous remote patient monitoring program (CRPM)
- To determine if continuous remote patient data can reduce 30-day readmission rate
- To determine if continuous monitoring can improve care process
- To evaluate preliminary efficacy and technical outcomes

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

HF Monitoring



Readmission Risk

HF diagnosis Home health patient Followed by HF team post-discharge

50% Readmission Threshold

Heart Rate Single Lead EKG Respiratory Rate

Patient reported data

Rules based & Machine Learning algorithms

Web portal with physiologic, patient reported data and alerts

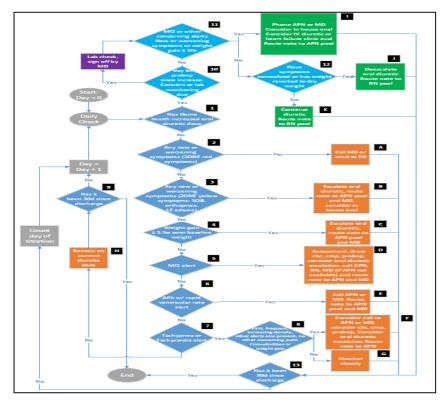
Home health nurse assessment

HF APP HF attending

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

HF CRPM Protocol

- Patient-reported new/worsening symptoms
- Weight gain
- Key alerts: Afib, Tachycardia, Bradycardia, Tachnypea
- MCl alert: applies a personalized physiologic baseline established in the first 48 hours by studying the user's respiration, heart rate, sleep, and other parameters
- EHR structured notes



Research Problem

- Challenge: Limited ability to robustly estimate the workload of the care team and make appropriate staffing and operational decisions
- Approach: Use Discrete Event Simulation to mirror the real-world execution of CRPM in a virtual environment to
 - Estimate the care team's workload and its variability
 - Evaluate escalation patterns in the post-discharge period for patients at varying levels of readmission risk at discharge

Simulation Model

- Widely used to study workflow efficiency in diverse healthcare settings
- Arena simulation software (Rockwell Automation, Milwaukee, WI, student version 16.1)
- CAPE scores used to categorize patients into three distinct levels High, Medium, & Low

Risk	Risk Criterion	Patient
Category		Composition
Low	<= 75 th percentile	28%
Medium	> 75 th and <= 90 th percentile	32%
High	> 90 th percentile	40%

- Utilize data from a pilot deployment with 44 patients to identify the composition of patients within each risk level and estimate the likelihood and frequency of alerts for each risk level
- Clinical guidance used to determine HHN tasks & activity times

Distribution
Туре
Normal
Lognormal

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

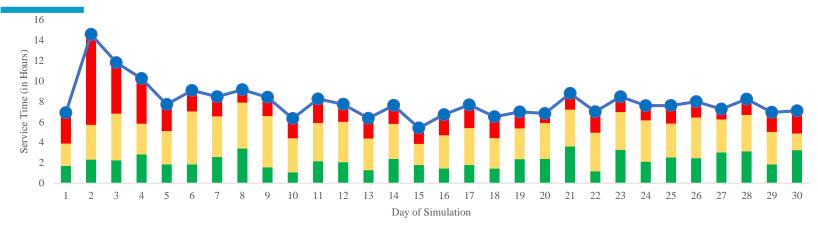
Results – Alert Summary

Alert Type	Frequency	Additional Time Spent/Patient to Address Alerts
Red Zone	4 patients	7 minutes
Yellow Zone	6 patients	15 minutes
MCI	4 patients	11 minutes
Escalation Pathway	10 patients	8 minutes

30-day monitoring period with 25 simulated patients

- Age: 40-85 years
- Weight: 100-250 lbs
- Initial titration dose of diuretic: 40-80 mg
- 4 red zone escalations exit model
- 6 yellow zone escalations increased diuretic
- 4 with MCI alerts increased diuretic
- 10 in escalated care pathway, 4 readmitted exit model

Results – Service Time Profile



Service Times by Risk Level & Variability in Home Health Nurses' Workload when monitoring 25 simulated CRPM patients at the same time

ow Risk

Medium Risk High Risk

—Total Time

@TheInstituteDH #MEDINF023

Limitations & Future Work

- Real-world usability is determined by the size and detail of the data sample used to instantiate DES model
- The limited sample used in this study may constrain the applicability and generalizability of the insights
- Future work will use data from a larger cohort of patients to instantiate and validate the model
- Ongoing extensions will test the design of prediction models embedded in the DES model using the new information produced each day

Conclusions

- Developed a scalable and generalizable approach using CRPM and DES
- Home healthcare teams and operational decision makers of healthcare systems can use to dynamically estimate staffing requirements and determine appropriate interventions that enable efficient care utilization
- Nurses/clinicians can use to anticipate and improve preparedness in the context of HF-related readmissions
- Researchers can leverage to generate new hypotheses on alert mechanisms, risk prediction indices and design of efficient post-discharge care pathways to potentially reduce risk of readmissions

Acknowledgements

• We are grateful to M. Shanker, M. Nakhate, C. Paraschiv, U. Ravichandran, Y. Zhu, K. Larimer, and the Rice Foundation for their support during the development of this study

Thank you!

Questions?