8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

@Shyam_Vis

Time-Series Aware Metrics for the Evaluation of Intraoperative EEG-Based Ischemia Detection

Shyam Visweswaran

Professor of Biomedical Informatics
University of Pittsburgh (US)

Intraoperative EEG-Based Ischemia Detection

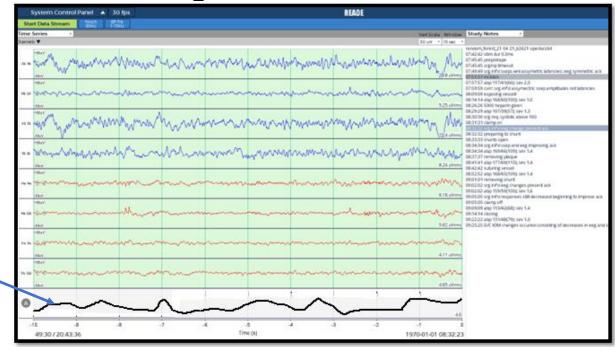
8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Annotated Data

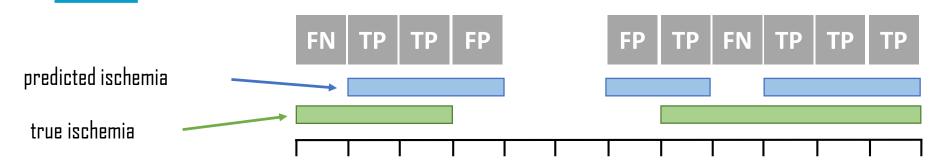
Monitoring start

Monitoring start

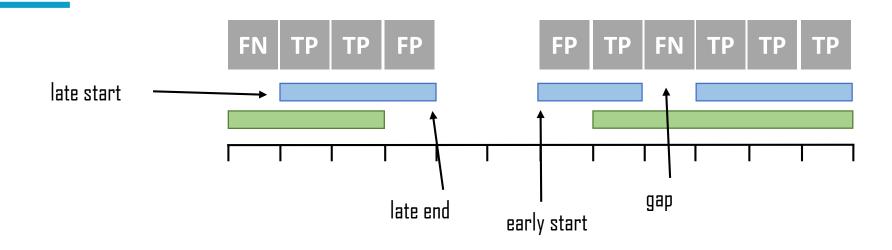
Monitoring start


Monitoring start

Monitoring end


Machine Learning-Based Alerting

probability of ischemia


Classical Precision and Recall

- Precision = 0.75 (TPs = 6 and FPs = 2)
- Recall = 0.75 (TPs = 6 and FNs = 2)

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA Limitations of Classical Precision and Recall

Time-Series Aware Precision and Recall

- Range-based recall and precision (RPR)¹
- Time-series aware precision and recall (TaPR)²

Tatbul N, Lee TJ, Zdonik S, Alam M, Gottschlich J. Precision and recall for time series. In: Advances in neural information processing systems. 2018;31.

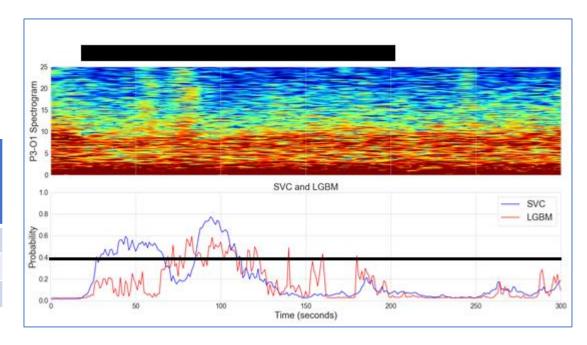
Hwang WS, Yun JH, Kim J, Kim HC. Time-series aware precision and recall for anomaly detection: considering variety of detection result and addressing ambiguous labeling. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management 2019 Nov 3 (pp. 2241-2244).

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Results

AUPRC = Area under the precision recall curve

AUPRC	Most frequently first-ranked model	Percent iterations
Classical	LGBM	64.1
RPR (front)		
TaPR		



8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Results

AUPRC = Area under the precision recall curve

AUPRC	Most frequently first-ranked model	Percent iterations
Classical	LGBM	64.1
RPR (front)	SVC	95.5
TaPR	SVC	83.5

Conclusions

- Clinical monitoring systems may produce alerts that are temporal in nature (start, end, duration) e.g., continuous EEG or heart rate monitoring
- Classical evaluation metrics are likely be inadequate for evaluating such alerts and timeseries aware metrics may be better suited
- In our application, the model that had highest AUPRC differed between classical metrics and time-series aware metrics

Authors & Funding

- Amir I. Mina, MD/PhD trainee, University of Pittsburgh
- Parthasarathy Thirumala, MD, Neurology & Neurophysiology, UPMC
- Kayhan Batmanghelich, PhD, College of Engineering, Boston University
- Jeremy U. Espino, MD, MS, Biomedical Informatics, University of Pittsburgh
- Allison M. Bradley, PhD, Biomedical Informatics, University of Pittsburgh

• Funding: UPMC Enterprises