8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

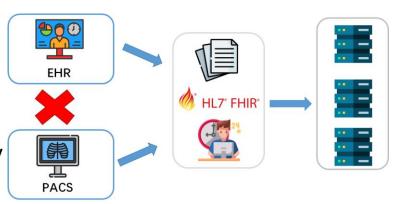
https://github.com/cylab-tw

Design of HL7 FHIR Profiles for Pathology Reports Integrated with Pathology Images

Chung-Yueh Lien

Assistant professor

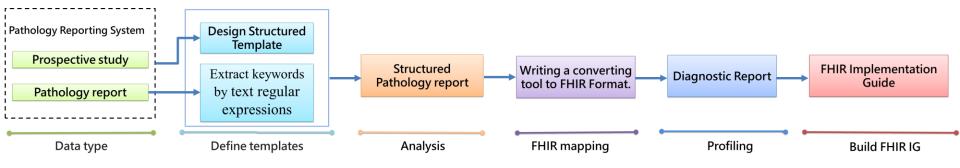
Department of Information Management


National Taipei University of Nursing and Health Sciences, Taipei, Taiwan

Introduction

- The pathology report is often unstructured and heterogeneous across different systems.
- The lack of interoperability for data collection and analysis across multiple institutions.
- The HL7 FHIR is expected to solve this interoperability problem and improve the usability of health data.

The aim of this study


- Create and test an interoperability model for pathology reports with associated DICOM whole-slide images.
 - Adhere to the American Joint Committee on Cancer (AJCC) 8th checklist for diagnostic items.

The aim of this study

- Create and test an interoperability model for pathology reports with associated DICOM whole-slide images.
 - Adhere to the American Joint Committee on Cancer (AJCC) 8th checklist for diagnostic items.

The pipeline for profiling FHIR IG

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Methods

- Data source
 - 190 prospective admissions from Taipei Veterans General Hospital
 - Non-small cell lung cancer pathology report
- The structure of report
 - Pathological diagnosis
 - Gross finding
 - Microscopic finding

The format of the pathology report

PATHOLOGICAL DIAGNOSIS:

Lung, right lower lobe, segmentectomy
 Adenocarcinoma, acinar predominant, pT1aN0

GROSS FINDING:

The specimen received in formalin has 3 parts. Part (A) consists of a piece of lung, labeled RLL segment and measures $6.5 \times 3.3 \times 1.8 \text{ cm}$.

MICROSCOPIC FINDING:

- 1. Histologic type: adenocarcinoma, acinar predominant
- 2. Histologic pattern: acinar (90%), lepidic (10%)
- Cell type: non-mucinous tumor cells
- 4. Total tumor size: 0.6 x 0.4 cm (microscopic measurement)
- 5. Size of invasive focus: 0.6 cm
- 6. Tumor grading (WHO 2021): grade 2 (moderately differentiated)
- 7. Angiolymphatic invasion: absent
- 8. Perineural invasion: absent
- 9. Spread Through Air Spaces (STAS): absent

Methods – Data collection

- Data source
 - 190 prospective admissions from Taipei Veterans General Hospital
 - Non-small cell lung cancer
- The structure of report
 - Pathological diagnosis
 - Gross finding
 - Microscopic finding ____ free text and itemized forms

The format of the pathology report

PATHOLOGICAL DIAGNOSIS:

- 1. Lung, right lower lobe, segmentectomy
 --- Adenocarcinoma, acinar predominant, pT1aN0
- GROSS FINDING:

free text

The specimen received in formalin has 3 parts. Part (A) consists of a piece of lung, labeled RLL segment and measures 6.5 x 3.3 x 1.8 cm.

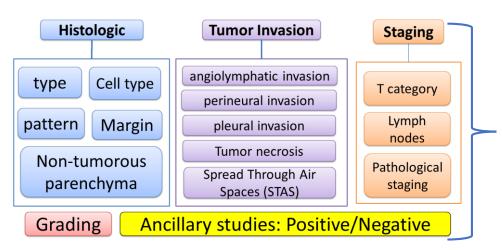
MICROSCOPIC FINDING

- 1. Histologic type: adenocarcinoma, acinar predominant
- 2. Histologic pattern: acinar (90%), lepidic (10%)
- 3. Cell type: non-mucinous tumor cells
- 4. Total tumor size: 0.6 x 0.4 cm (microscopic measurement)
- 5. Size of invasive focus: 0.6 cm
- 6. Tumor grading (WHO 2021): grade 2 (moderately differentiated)
- 7. Angiolymphatic invasion: absent
- 8. Perineural invasion: absent
- 9. Spread Through Air Spaces (STAS): absent

Methods – The design of FHIR profile

Pathological diagnosis

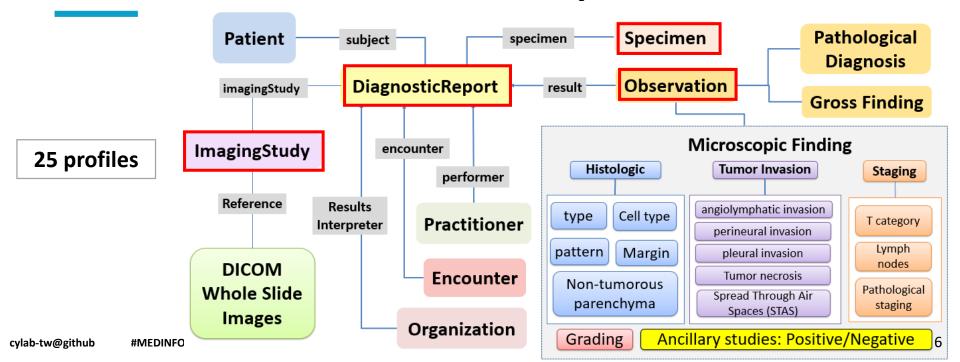
Gross finding


State the diagnostic results for tumor information

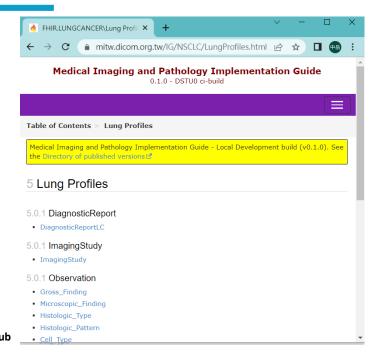
The specimen's status in the microscopy

Free-text stored in FHIR Observations

Microscopic findings


Describing the detailed information

Using
text regular expressions
to extracting the
medical vocabularies to
convert to
FHIR Observations
encoded by AJCC 8th


The architecture of the FHIR profiles

MEDINFO23

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Results – FHIR IG

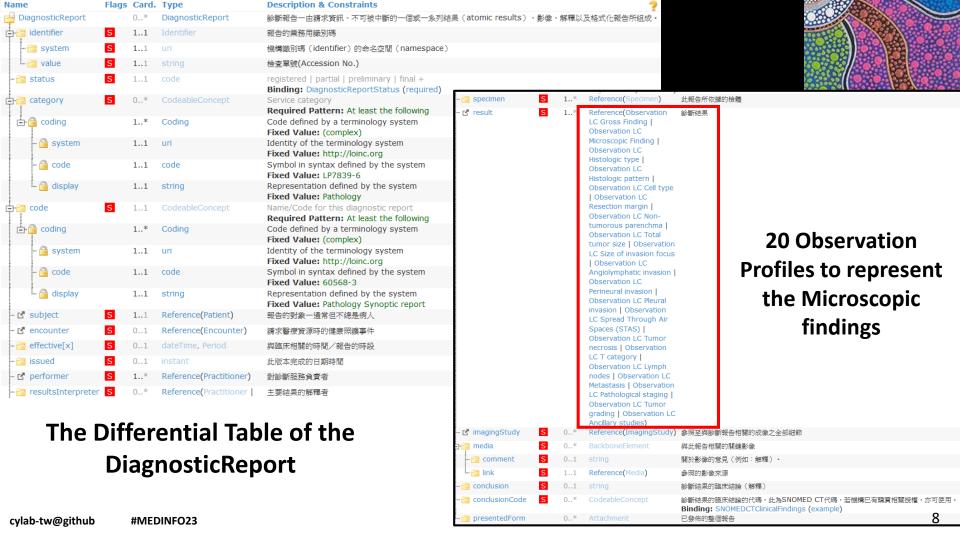
https://mitw.dicom.org.tw/IG/NSCLC/

5.0.1 DiagnosticReport

DiagnosticReportLC

5.0.1 ImagingStudy

• ImagingStudy


5.0.1 Observation

- Gross_Finding
- Microscopic_Finding
- Histologic_Type
- Histologic_Pattern
- Cell_Type
- Resection_Margin
- · Nontumorous_Parenchyma
- Total_Tumor_Size
- Size_Of_Invasion_Focus

- Angiolymphatic_Invasion
- Perineural_Invasion
- Pleural_Invasion
- Spread_Through_Air_Spaces
- Tumor_Necrosis
- T_Category
- Lymph_Nodes
- Metastasis
- · Pathological_Staging
- Tumor_Grading
- Treatment_Effect
- Ancillary_Studies
- DiagnosticReportLC
- ImagingStudy

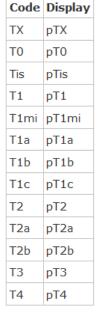
5.0.1 Specimen

SpecimenLC

Adopted ICD-10 PCS for Imaging Procedure

This code system http://mitwfhir.dicom.org.tw/fhir/CodeSystem/ICD-10-procedurecode defines the following codes:

Code	Display
B34JZZ3	Ultrasonography of Left Upper Extremity Arteries, Intravascular
B34JZZZ	Ultrasonography of Left Upper Extremity Arteries
B34KZZ3	Ultrasonography of Bilateral Upper Extremity Arteries, Intravascular
B34KZZZ	Ultrasonography of Bilateral Upper Extremity Arteries
B34RZZ3	Ultrasonography of Intracranial Arteries, Intravascular
B34RZZZ	Ultrasonography of Intracranial Arteries
B34SZZ3	Ultrasonography of Right Pulmonary Artery, Intravascular
B34SZZZ	Ultrasonography of Right Pulmonary Artery
B34TZZ3	Ultrasonography of Left Pulmonary Artery, Intravascular
B34TZZZ	Ultrasonography of Left Pulmonary Artery
B34VZZ3	Ultrasonography of Ophthalmic Arteries, Intravascular
B34VZZZ	Ultrasonography of Ophthalmic Arteries


Expansion Example: NSCLC Histologic pattern

Expansion based on NSCLC-Histologic-pattern v0.1.0 (CodeSystem)

Code	System	Display
lepidic	http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-Histologic-pattern	lepidic
acinar	http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-Histologic-pattern	acinar
papillary	http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-Histologic-pattern	papillary
micropapillary	http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-Histologic-pattern	micropapillary
solid	http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-Histologic-pattern	solid

Code	Display
NX	pNX
NO	pN0
N1	pN1
N2	pN2
N3	pN3

Code	Display
MX	рМХ
МО	pM0
M1	pM1
M1a	pM1a
N1b	pM1b
N1c	pM1c

Code	Display
0	0
IA1	Stage IA1
IA2	Stage IA2
IA3	Stage IA3
IB	Stage IB
IIA	Stage IIA
IIB	Stage IIB
IIIA	Stage IIIA
IIIB	Stage IIIB
IIIC	Stage IIIC
IVA	Stage IVA
IVB	Stage IVB

T Stage

N Stage

M Stage

TNM Stage

11

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Mapping Example

```
1. Histologic type: lymphoepithelial carcinoma
```

- 2. Tumor size: 4.5 x 2.2 x 2.1 cm
- 3. Tumor differentiation: poorly differentiated
- 4. Angiolymphatic invasion: absent
- 5. Perineural invasion: absent
- 6. Spread Through Air Spaces (STAS): absent
- 7. Tumor necrosis: present
- 8. Pleural invasion: invades beyond the elastic layer (PL1)
- 9. Bronchus cut end: free of tumor involvement
- 10. Non-tumorous parenchyma: congestion
- ll. T category:

Tumor >4 cm but <= 5 cm in greatest dimension (pT2b)

- IZ. Lymph nodes:
 - The paratracheal (1/10) and lower paratracheal (2/4) lymph nodes have metastatic carcinoma (N2).
 - Largest metastasis size: 0.8 cm
 - Extracapsular extension: absent
- 13. Pathological staging: pT2bN2 (AJCC 8th edition).

```
"category": {
  "coding": [
      "system": "http://hl7.org/fhir/R4/codesystem-observation-category.html",
      "code": "laboratory",
      "display": "Laboratory"
"code": {
  "coding": [
      "system": "http://loinc.org",
      "code": "21899-0".
      "display": "Primary tumor.pathology Cancer"
"subject": {
 "reference": "Patient/MitwPatient"
"valueCodeableConcept": {
 "coding": [
      "system": "http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-pT",
      "code": "T2b",
      "display": "pT2b"
```


Mapping Example

```
"category": {
 "coding": [
     "system": "http://hl7.org/fhir/R4/codesystem-observation-category.html",
     "code": "laboratory",
     "display": "Laboratory"
                                                                             12. Lymph nodes:
"code": {
                                                                                   - The paratracheal (1/10) and lower paratracheal (2/4)
 "coding": [
                                                                                   lymph nodes have metastatic carcinoma (N2).
- Largest metastasis size: 0.8 cm
     "system": "http://loinc.org",
    "code": "21900-6",
                                                                                   - Extracapsular extension: absent
     "display": "Regional lymph nodes.pathology [Class] Cancer"
"subject": {
 "reference": "Patient/MitwPatient"
"valueCodeableConcept": {
 "coding": [
    "system": "http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-pN",
     "alsplay": "pN2"
 "text": "- The paratracheal (1/10) and lower paratracheal (2/4)lymph nodes have metastatic carcinoma (N2).- Largest metastasis size 0.8 cm- Extracapsular extension absent"
```


8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Mapping Example

```
"category":
 "coding": [
     "system": "http://hl7.org/fhir/R4/codesystem-observation-category.html",
     "code": "laboratory",
     "display": "Laboratory"
"code": {
 "coding": [
     "system": "http://snomed.info/sct",
     "code": "397005006",
     "display": "World Health Organization tumor classification (observable entity)"
"subject": {
 "reference": "Patient/MitwPatient"
"valueCodeableConcept": {
 "coding": [
     "system": "http://mitwfhir.dicom.org.tw/fhir/CodeSystem/NSCLC-Grading",
     "display": "Grade group 1"
```

3. Tumor differentiation: poorly differentiated

Code	Display	Definition
G1	Grade group 1	Well differentiated
G2	Grade group 2	Moderately differentiated
G3	Grade group 3	Poorly differentiated
G4	Grade group 4	Undifferentiated
GX	Cannot be assessed	Cannot be assessed
GN	Not applicable	Not applicable.

Discussion

- It is critical in ensuring that the used medical vocabulary covers all the value sets required for the design of the value sets in the system analysis stage.
- Tumor, node, metastasis (TNM) staging varies for different types of cancers, and even within the same staging symbol, there may be slight differences in its meaning.
- Determining the hospital's coding book is critical, as this may affect whether subsequent value sets need to be customized.
- To improve the report's integration with its entire slide images, it is advisable to utilize the ImagingStudy resource to link the DICOM-encoded images.

INFO23

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

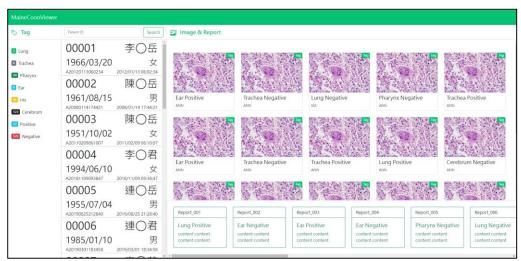
Conclusions

- We have created cancer-related profiles in the form of an FHIR IG, containing FHIR resources relevant to the nonsmall cell lung cancer pathology report.
 - Converting the text-based pathology reports into structured forms.
 - Mapping the itemized vocabulary to the FHIR observation resources.
- The proposed FHIR IG will be tested in the Medical Informatics Taiwan (MI-TW) Connectathon.
 - 2-5 October 2023, Taipei, Taiwan.

Special Acknowledgments

- Main contributors
 - Tzu-Yun Ting (丁子芸)
 - Li-Chun Kuo (郭俐君)

They are preparing their master's degree defense now.


We are open source, DICOM, IHE and FHIR compatible.

Future works

• We are developing the open-source tools for management and viewing the FHIR Report with DICOM image to build the pathology imaging research repository.

