Elucidating Discrepancy in Explanations of Predictive Models Developed using EMR

Aida Brankovic| 9 July 2023

Australian e-Health Research Centre

Australia's National Science Agency

Aida Brankovic

Wenjie Huang

David Cook

(Co)Author(s)

Sankalp Khanna

Konstanty Bialkowski

Australia's National Science Agency

Motivation

Explainable AI

- Gradient-based (SmoothGrad, Integrated Gradients, Deep Taylor Decomposition (DTD))
- Layer-wise propagation
- Perturbation-based (LIME, Shap)

Figure taken from https://news.mit.edu/2022/machine-learning-explainability-0505

Explainable AI

- Gradient-based (SmoothGrad, Integrated Gradients, Deep Taylor Decomposition (DTD))
- Layer-wise propagation
- Perturbation-based (LIME, Shap)

Methods: Data

Readmission within next 30 days (RA30)

scientific reports Vital signs (VS) OPEN Explainable machine learning nature for real-time deterioration alert REPORTS prediction to guide pre-emptive Check for updates Aida Brankovic^{1,4}, Hamed Hassanzadeh^{1,4}, Norm Good¹, Kay Mann¹, Sankalp Khanna¹, Ahmad Abdel.Hafez² & David Cook³

Data used: 1 Jan 2015 - 31 Dec 2018

Data used: 1 Jan 2016 - 31 Dec 2018

Methods: Models and Explainable Als

Research Centre

CSIRO

DNN, XGB Figures: https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

DTD Figure: Montavon G, Lapuschkin S, Binder A, Samek W, Müller KR. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern recognition. 2017 May 1;65:211-22.

Results

Data	Rank	Shap	L1 coeff	DTD
RA30	1	Prev. inpat. stay count	Adm. source: Boarder	Prev. inpat. stay count
	2	Patho tests count	Care type: Other	Ed presentations stay counts
	3	Elect. status: Not assigned	Elect. status: Not assigned	age
	4	LOS	Care type: Acute	Prev. inpat. stay count ²
	5	Planned the same day	Adm. source: Emergency	Elect. status: Emergency
VS	1	LOS	LOS	AVPU
	2	SpO2	SpO2	O2 Flow rate
	3	SBP	SBP count	NMesuredEvents
	4	NRecordedVS	Resp. Rate count	NRecordedVS
	5	min SpO2	DBP	SpO2

 Table 1
 Top 5 features obtained with considered explainers for VS and RA30 datasets

Results

Figure 1. Feature Agreement (FA) and Rank Agreement (RA) obtained for Shap - L1 coefficient (SL), Shap-Deep Taylor Decomposition (SD) and L1 coefficient - Deep Taylor Decomposition (LD) model explanations using RA30 (a, b) and VA (c, d) datasets i.e., the outcomes of interest.

Discussion and Remarks

- Identified causes of the disagreement as the first step in establishing the criteria for trustworthiness
 - Clinical
 - i. Missing features which if available, would explain more of the variation and causation of the outputs
 - ii. Dependence between factors (different groups of features could have the same implications for clinicians)
 - iii. Errors, missing data that could be observed or contradictory information
 - Model-related
 - i. Causality might not be discovered and hence post-hoc not explainable
 - ii. Different methods operate on different principles, different features might be identified as the most relevant
- Rigorous evaluation for robustness needed

Thank you

Health and Biosecurity

Dr Aida Brankovic Research Scientist

aida.brankovic@csiro.au aehrc.csiro.au

Health Intelligence @ CSIRO AEHRC

Health System Productivity & Efficiency Operational & Clinical Decision Support Evidence-driven Policy & Healthcare Delivery