

Comprehensive evaluation framework for artificial intelligence in healthcare and an example of its application

@docsunny100

Dr Sandeep Reddy

Director, Healthcare Management *Deakin School of Medicine*

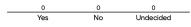
Outline

- Why evaluation of AI in healthcare?
- Current Approaches
- TEHAI and Components
- Application and Findings
- Discussion

SR

Account

0


Content

R

Design

Do we need evaluation of Al in Healthcare

Why Evaluate AI in Healthcare

> Progress in artificial intelligence (AI) has opened new opportunities

> However, in limited assessments that have taken place so far, it has been found AI systems have fallen short of their translational goals

> This is because many AI systems have intrinsic inadec that don't get assessed until after deployment TheInstituteDH #MEDINF023

Context

@TheInstituteDH #MEDINF023

Context

- Utilising and integrating AI systems in clinical settings can be potentially expensive and disruptive
- Therefore, a rigorous evaluation that assesses AI systems early and at various stages of their deployment can support or contradict the use of a specific AI tool

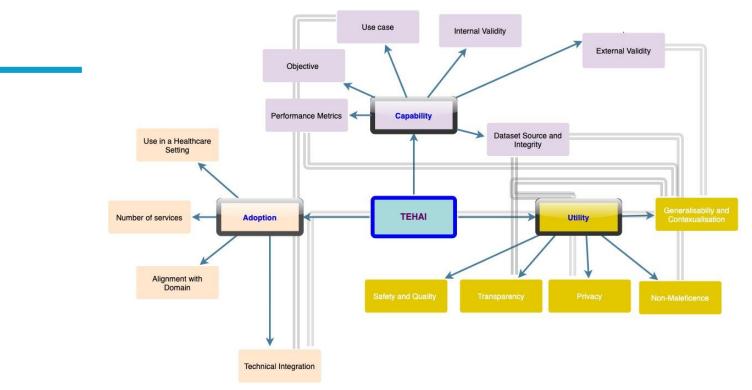
Current Evaluation Approaches

- Currently available evaluation frameworks generally focus on the reporting and regulatory aspects
- It is evident there is an absence of an evaluation framework that assesses various stages of development, deployment, integration and adoption of AI systems
- Dependence on disparate evaluation frameworks to assess different aspects and phases of AI systems is
 unrealistic
- Also, currently available evaluation and reporting frameworks fall short in adequately assessing the functional, utility, and ethical aspects of the models

Translational Evaluation of Healthcare AI (TEHAI)

- To address the gap in currently available evaluation frameworks, an international team of medical researchers and data scientists was constituted to develop TEHAI
- Following constitution of the team, we considered the evaluation and research principles that would inform the development of the framework
- Based on these principles and a critical review of related literature including frameworks and guidelines, the project team identified the key components developed the initial version of the TEHAI over a period of six months.

Translational Evaluation of Healthcare AI (TEHAI)


- To provide a layer of independent review before finalization of TEHAI, the draft consensus framework was then reviewed by an international panel
- The eight-member international panel had expertise in medicine, data science, healthcare policy, biomedical research and healthcare commissioning, and were drawn from the United Kingdom, United States of America and New Zealand
- The panel members were provided the framework and documentation and after, meetings were convened with panel members to receive their feedback.
- Following collation of the feedback from the expert panel, TEHAI was refined to incorporate panel members feedback and was then finalised

@TheInstituteDH #MEDINF023

TEHAI

@TheInstituteDH #MEDINF023

IF023

TEHAI

1. Capability

- 1.1.Objective
- 1.2. Use Case
- 1.3. Dataset Source and Integrity
- 1.4. Performance Metrics
- 1.5. Internal Validity
- 1.6. External Validity

2. Utility

- 2.1. Generalisability and Contextualisation
- •2.2. Safety and Quality
- 2.3. Transparency
- •2.4. Privacy
- 2.5. Non-Maleficence

3. Adoption

- 3.1. Use in a Healthcare Setting
- 3.2. Number of Services
- 3.3. Alignment with Domain
- 3.4. Technical Integration

MEDINFO23

Capability: This component assesses the intrinsic technical capability of the AI system to perform its expected purpose, by reviewing key aspects as to how the AI system was developed

Utility: This component evaluates the usability of the Al system across different dimensions including the contextual relevance, and safety and ethical considerations. It also assesses the efficiency of the system

Adoption: This component appraises translational value by evaluating key elements that demonstrate the adoption of the model in real life settings

	Component	Sub-component	Initial Score	Weight	Subcomponent Sco	re= Initial Score x Weight
		Objective of Study		10		
		Dataset Source and Integrity		10		0-9
	Capability	Internal Validity	0-3	10	Weight 5	10-14
		External Validity		10		15 and above
		Performance Metrics		10		
		Use Case		5		
		Generalizability and Contextualisation		10		
		Safety and Quality	0-3	10	-	0-19
	Utility	Transparency		10	-	20-29
		Privacy Non-Maleficence		10		30 and above
		Non-Malencence		10	Weight 10	
		Use in a Healthcare Setting	_	10		
		Technical Integration		10		
	Adoption	Number of Services	0-3	5		
		Alignment with Domain		5		
@TheInstituteDH ;						

TEHAI usability

Development Check

Pre-Development Phase	Objective	Dataset Source and Integrity
Pre-Development Phase	Use Case	Transparency
Development Phase	Performance Metrics	Internal Validity

De	ployment Check	_
Pre-Deployment Phase	Generalizability and Contextualization	External Validity
Deployment Phase	Technical Integration	Privacy
Post-Deployment Phase	Safety and Quality	:

D	iscernment Check	<u>د</u>
Short Term Phase	Non-Maleficence	
Mid Term Phase	Use in a Healthcare Setting	
Long Term Phase	Number of Services	Alignment with Domain

Most Read Articles

REVIEW:

Evaluation framework to guide implementation of Al systems into healthcare settings 12 October, 2021

ORIGINAL RESEARCH:

Reliability of COVID-19 symptom checkers as national triage tools: an international case comparison study 18 October, 2021

COMMUNICATION:

A step-by-step guide to peer review: a template for patients and novice reviewers 19 August, 2021

RESEARCH ARTICLE:

Using the Internet as a source of information and support: a discussion paper on the risks and benefits for children and young people with long-term conditions 1 January. 2015

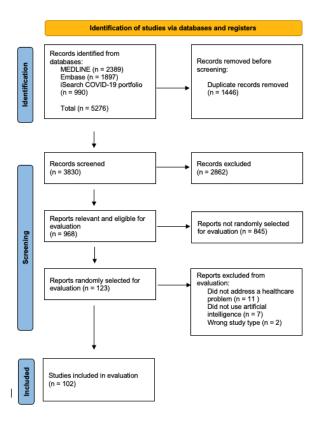
ORIGINAL RESEARCH:

User testing of a diagnostic decision support system with machine-assisted chart review to facilitate clinical genomic diagnosis 7 May, 2021

Reddy, S et al. (2021). Evaluation framework to guide implementation of AI systems into healthcare settings. *BMJ Health & Care Informatics* 2021;**28:**e100444.

@TheInstituteDH

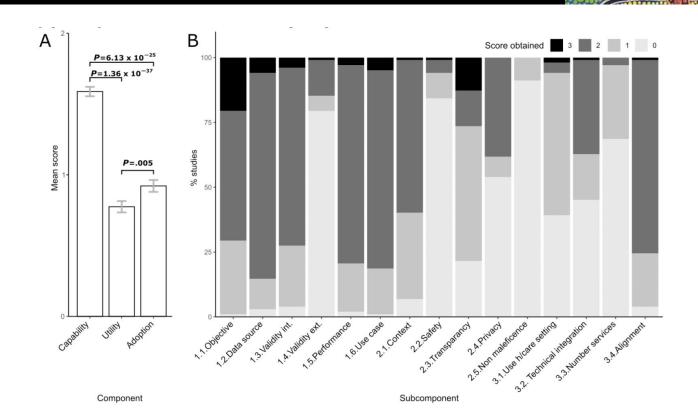
Application


Application of a Comprehensive Evaluation Framework to COVID-19 Studies: Systematic Review of Translational Aspects of Artificial Intelligence in Health Care

Aaron Edward Casey^{1,2}, PhD; Saba Ansari³, GCHE (Teaching and Learning), MSc; Bahareh Nakisa⁴, BSE, MCS, PhD; Blair Kelly⁵, Grad Dip (InfoLibStds), BCom; Pieta Brown⁶, MPS; Paul Cooper³, PhD; Imran Muhammad³, MIS, MSc, PhD; Steven Livingstone⁶, BSc, GradDipSci, MDataSci; Sandeep Reddy³, MBBS, MSc, PhD; Ville-Petteri Makinen^{1,2,7,8}, DSc

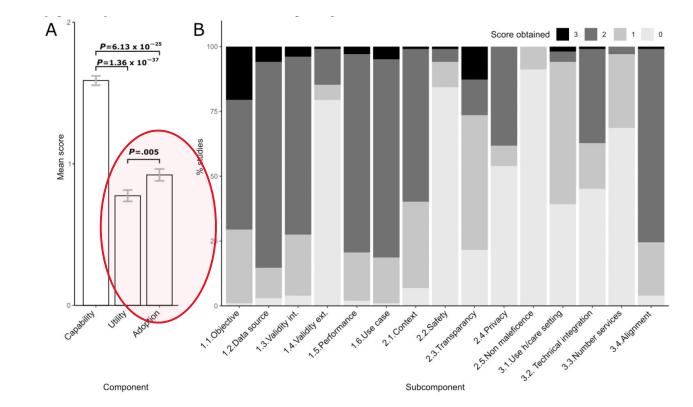
@TheInstituteDH #MEDINF023

Application

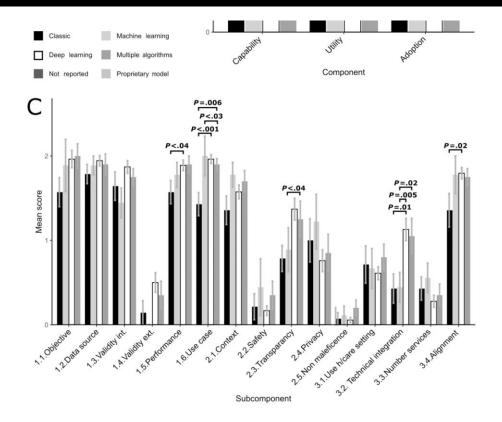


@TheInstituteDH

#MEDINF023



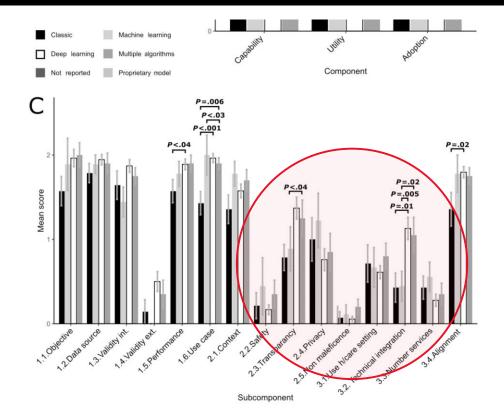
Application



@TheInstituteDH

Application

Application



@TheInstituteDH a

#MEDINF023

Application

Learning

- The 'utility' component assesses how safely can the AI model be used in healthcare
- Very few studies scored well across the criteria and scored poorly especially with the safety and quality and non-maleficence subcomponents
- One of the distinguishing aspects of TEHAI framework compared to other evaluation framework is its assessment of how well the AI model is adopted
- This is assessed through the actual use of the AI model in health services or healthcare delivery.
- Considering many of the COVID-AI models were experimental and the time frames we assessed were short, very few included studies did well in the component
- The top-ranking study in this component was an online COVID-19 mortality prediction model that was deployed as an open-source tool making it highly accessible and adoptable.
 Implementation #MEDINFID23

@TheInstituteDH

#MEDINF023

In conclusion • TEHAI- A comprehensive evaluation framework

- Three main components (Capability, Utility and Adoption) and 15
 subcomponents
- Can be used in development, deployment and discernment stages
- Applied to COVID-19 AI studies
- Very few studies have a translational component i.e., did poorly in utility and adoption components
- Therefore, evaluation has to in-built in product/application development cycle

Discussion/Questions

