Towards accurate search for neonatal heartbeat: Weighted algorithm for reliable ECG analysis of premature infants

Authors: Jessica Rahman, Aida Brankovic, Mark Tracy, Robert Halliday, Sankalp Khanna

Australia's National Science Agency

Overview

- Motivation
- Aim of the study
- Materials and Methods
- Results
- Conclusion

Motivation

- Extremely preterm infants have a higher risk of death and permanent disabilities
- Physiological characteristics e.g. Heart Rate Variability (HRV) can provide crucial information relating to different disease conditions
- First step of HRV analysis is the accurate detection of the QRS complex
- State-of-the-art QRS detection methods can vary widely depending on the characteristics of the signals, collection methods and pre-processing techniques

Aim of the Study

- Evaluate and compare the performance of several stateof-the-art QRS complex detection algorithms on two real-world premature infant ECG datasets.
- Introduce and evaluate a weighted ensemble algorithm that leverages the best-performing of these algorithms to deliver consistently superior performance

Fig 1: ECG QRS complex

Materials and Methods

Dataset 1

- Collected at the Neonatal Intensive Care Unit (NICU) at Westmead Hospital, Sydney, Australia
- 16 ECG data snippets from preterm infants
- Total duration ~ 52 hours
- QRS complex detection using ADInstruments Labchart
- Erroneous and missing peaks were manually annotated

Dataset 2

- Preterm Infant Cardio-Respiratory Signals (PICS) database
- 10 ECG data from preterm infants
- Total duration \sim 440 hours
- QRS complex detection using a modified Pan-Tompkins algorithm
- Erroneous and missing peaks were visually inspected and corrected

Materials and Methods (contd...)

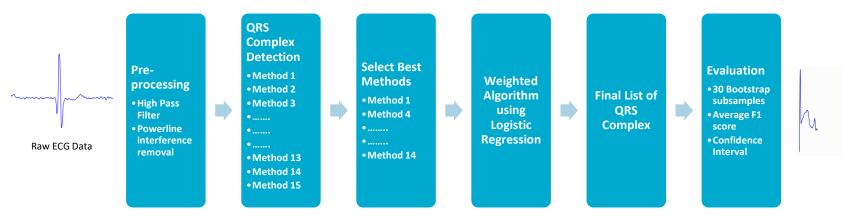


Fig 2: Overview of the process

Materials and Methods (contd...)

Performance Evaluation and Statistical Analysis

- F1-score, the harmonic mean of precision (i.e. positive predictive value) and recall (i.e. sensitivity)
- Performance of the methods compared against ground truth using bootstrap sub-sampling of 20-minute segments
- Process repeated 30 times
- Confidence intervals (CIs) computed with two-sample paired t-tests.

Results

		PICS Database		Westmead NICU Database	
Algorithm	Implementation	Mean F1	CI	Mean F1	CI
Christov	Biosspy	0.606	[0.592,0.621]	0.77	[0.768,0.771]
Engzee	Biosppy	0.629	[0.625,0.634]	0.83	[0.83,0.831]
Gamboa	Biosppy	0.584	[0.575,0.592]	0.867	[0.866,0.868]
Neurokit (Default)	Neurokit	0.767	[0.761,0.772]	0.869	[0.868,0.87]
Pan-Tompkins	Neurokit	0.29	[0.279,0.301]	0.331	[0.331,0.332]
Martinez	Neurokit	0.25	[0.247,0.253]	0.836	[0.835,0.837]
Christov	Neurokit	0.643	[0.637,0.648]	0.579	[0.574,0.584]
Gamboa	Neurokit	0.584	[0.575,0.592]	0.867	[0.866,0.868]
Elgendi	Neurokit	0.561	[0.558,0.563]	0.829	[0.827,0.830]
Kalidas	Neurokit	0.001	[0.001,0.002]	0.006	[0.0061,0.0063]
Rodrigues	Neurokit	0.965	[0.961,0.969]	0.674	[0.672,0.676]
Zong	Neurokit	0.69	[0.683,0.697]	0.561	[0.557,0.565]
Nabian	Neurokit	0.481	[0.477,0.486]	0.5	[0.5,0.501]
Hamilton	Neurokit	0.327	[0.323,0.332]	0.583	[0.582,0.584]
Promac	Neurokit	0.73	[0.725,0.735]	0.744	[0.743,0.745]
Ensemble LR		0.966	[0.962,0.97]	0.893	[0.892,0.894]

 Table 1: Evaluation measures of QRS complex detection methods using two databases

- Proposed weighted ensemble approach performed superior overall
- Obtained results indicate that the state-of-the-art methods are data-sensitive and hence not robust

Conclusion

- Evaluated 15 state-of-the-art QRS complex detection implementations using two preterm neonatal datasets
- A weighted ensemble technique using Logistic Regression which outperformed the individual methods for both datasets
- This study suggests using the ensemble-based approach to ensure consistent performance across multiple datasets where individual methods deliver inconsistent performance

Health Intelligence @ CSIRO AEHRC

Thank you

Health & Biosecurity Jessica Rahman Postdoctoral Research fellow

jessica.rahman@csiro.au www.aehrc.com

Australia's National Science Agency

Health System Productivity & Efficiency Operational & Clinical Decision Support Evidence-driven Policy & Healthcare Delivery

Australian e-Health Research Centre