

@smcgrat.bsky.social

Remote patient monitoring: Promises and challenges for medically-underserved communities

Scott McGrath PhD FAMIA

Academic Program Officer IV *UC Berkeley – CITRIS Health*

@TheInstituteDH #MEDINF023

Telemedicine – a brief history

25 Cents April

1924 Over 200 Illustration

THE RADIO DOCTOR - Maybe

THE 100% RADIO MAGAZINE

@TheInstituteDH

#MEDINF023

- 1948 X-ray images are shared via telephone wires
 - 1959 Neurological exams are electronically transmitted
 - **1961** Alan Shepard had vitals monitored while on the spacecraft Freedom 7 (EKG, respiration, and temp)
 - **1970s** Kaiser Foundation and Lockheed develop an RPM program for the Papago Indian Reservation in Arizona, USA
 - **1990s** Internet adoption within healthcare, allowing RPM and telemedicine an opportunity for growth.
 - 2000s Arrival of Smartphones, tablets, and connected devices

NFO23

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

Global Internet Use

- An estimated 4.9 billion people are using the Internet in 2021
- Internet users are nearly twice as high in Urban areas than in Rural areas (76% vs 39%)

Barriers to health and digital equity for medically-underserved populations.

- Lack of broadband access for patients limits telehealth capabilities.
 - There are approximately 24 million Americans who lack access to broadband (25 Mbps)
 - Nearly 1/3 of Americans in rural areas lack broadband, with disparities greatest in people of lower socioeconomic status and people on tribal lands
- This gap was reflected in underserved populations limited use of virtual visits during COVID-19¹⁻²

Remote Patient Monitoring for rural and underserved populations

<u>Benefits</u>

- Improved access to high quality healthcare
 - Transportation is a barrier to care³
- Asynchronous or synchronous options
 - Savings for patients and providers⁴
- Staffing
 - Staff shortages reported due to burnout⁵
- Enhanced patient satisfaction⁶
- Promoting equitable access to health services and social responsibility⁷

Remote Patient Monitoring for rural and underserved populations

<u>Challenges</u>

- Broadband access
 - Limited or unreliable internet connectivity^{8,9}
- Digital literacy
 - Low satisfaction due to training and connectivity issues $^{\rm IO}$
- Staffing¹¹
- Patient engagement
 - Even with RPM, location and socioeconomic status impact engagement¹²
- Interoperability¹³

References

- 1. Chunara R, Zhao Y, Chen J, Lawrence K. Testa PA, Nov D, Mann DM. Telemedicine and healthcare disparities: a cohort study in a large healthcare system in New York City during COVID-19. Journal of the American Medical Informatics Association. 2021 Jan;28(1):33-41.
- 2. Franciosi EB, Tan AJ, Kassamali B, Leonard N, Zhou G, Krueger S, Rashighi M, LaChance A. The impact of telehealth implementation on underserved populations and no-show rates by medical specialty during the COVID-19 pandemic. Telemedicine and e-Health. 2021 Aug 1:27(8):874-80.
- 3. Kolluri S, Stead TS, Mangal RK, Coffee Jr RL, Littell J, Ganti L. Telehealth in Response to the Rural Health Disparity. Health psychology research. 2022:10(3).
- 4. Nord G, Rising KL, Band RA, Carr BG, Hollander JE. On-demand synchronous audio video telemedicine visits are cost effective. The American journal of emergency medicine. 2019 May 1:37(5):890-4.
- 5. Shanafelt TD, West CP, Dyrbye LN, Trockel M, Tutty M, Wang H, Carlasare LE, Sinsky C. Changes in burnout and satisfaction with work-life integration in physicians during the first 2 years of the COVID-19 pandemic. InMayo Clinic Proceedings 2022 Dec 1 (Vol. 97, No. 12, pp. 2248-2258). Elsevier.
- 6. Siwicki B. At UPMC, Remote Patient Monitoring helps reduce ER utilization and hospital readmissions (Internet). 2018 (cited 2023 Jun 13). Available from: https://www.healthcareitnews.com/news/upmc-remote-patient-monitoringhelps-reduce-er-utilization-and-hospital-readmissions
- 7. Mauricio N, Newhart G, Herber S, Ahumada-Newhart V. Telehealth Challenges for California Rural Hospitals in Reaching Latino Populations During COVID-19. Iproceedings. 2023 Apr 3;9(1):e41562.
- 8. Jang-Jaccard J, Nepal S, Alem L, Li J. Barriers for delivering telehealth in rural Australia: a review based on Australian trials and studies. Telemedicine and e-Health. 2014 May 1;20(5):496-504.
- 9. Alvarez-Risco A, Del-Aguila-Arcentales S, Yáñez JA. Telemedicine in Peru as a result of the COVID-19 pandemic: perspective from a country with limited internet access. The American Journal of Tropical Medicine and Hygiene. 2021 Jul;105(1):6.
- 10. Patterson A, Harkey L, Jung S, Newton E. Patient Satisfaction With Telehealth in Rural Settings: A Systematic Review. The American Journal of Occupational Therapy. 2021 Aug;75(Supplement_2):7512520383pl-.
- 11. Butzner M, Cuffee Y. Telehealth interventions and outcomes across rural communities in the United States: narrative review. Journal of medical Internet research. 2021 Aug 26;23(8):e29575.
- 12. Kirkland E, Schumann SO, Schreiner A, Heincelman M, Zhang J, Marsden J, Mauldin P, Moran WP. Patient demographics and clinic type are associated with patient engagement within a remote monitoring program. Telemedicine and e-Health. 2021 Aug 1;27(8):843-50.
- 13. Scott Kruse Č, Karem P, Shifflett K, Vegi L, Ravi K, Brooks M. Evaluating barriers to adopting telemedicine worldwide: a systematic review. Journal of telemedicine and telecare. 2018 Jan;24(1):4-12.

ACTIVATE: a model for digital health demonstrated in rural California, USA

@kimkater

Katherine Kim, PhD, MPH, MBA

Principal, Consumer Health Informatics, MITRE Corporation

Adjunct Associate Professor, University of California Davis

#MEDINF023

Partners

UCDAVIS HEALTH

Co-directors: David Lindeman, UC Berkeley/CITRIS Katherine Kim, MITRE

TIMETERDH

Funded via a gift grant through UC Berkeley/CITRIS

#MEDINF023 © 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED 22-02775-6

Embedded co-design approach to maximize usefulness, usability, outcomes

ACTIVATE

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED 22-03145-9

Demonstrated Outcomes in Community Health Centers

Kim KK, McGrath SP, Lopez Solorza J, Lindeman D. CIC 2022: The ACTIVATE Digital Health Pilot Program for Diabetes and Hypertension in an Underserved and Rural Community. Applied Clinical Informatics. 2023 May. DOI: 10.1055/a-2096-0326. PMID: 37201542.

Combined Results from First Two California Health Centers (unpublished, rolling enrollment)

Characteristic Number (%)	All Adults 18 to 64 years (n = 243)
Age, mean (range)	55.2 (31 – 83 years)
Female at Birth	95 (60.1%)
Hispanic or Latinx	216 (88.9%)
Spanish Primary Language	178 (73.3%)
Diabetes	195 (80.3%)
Hypertension	151 (62.1%)
Remote Patient Monitoring Measures Transmitted in 6 months, number	41,675

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED 22-03145-9

Diabetes in Target Control: 3.5 point improvement in A1c (unpublished, rolling enrollment)

	<u>All Adults</u> Target 7 – 8 %		
Pre-Post Measures	Number of patients	Hemoglobin A1c % m (SD)	
Pre-enrollment	153	10.96 (1.89)	
3-month ¹	153	7.89 (1.78)	
3-month Change*		3.07 (2.72)	
6-month ²	89	7.57 (1.59)	
6-month Change*		3.49 (2.50)	

¹ Glucose readings over months 1-3 were averaged and converted to A1c using the ADA eAG to A1c conversion calculator⁴

² Glucose readings over months 4-6 were averaged and converted to A1c using the ADA eAG to A1c conversion calculator⁴

*Indicates reduction in measure

and the state of t

Hypertension in Target Control: 20 point improvement in systolic blood pressure (unpublished, rolling enrollment)

	<u>All Adults</u> Target below 130/80		
Hypertension	Number of patients	Systolic mmHG m (SD)	Diastolic mmHG m (SD)
Pre-enrollment	70	151.46 (15.81)	82.61 (8.12)
3-month ³	70	136.23 (16.64)	82.06 (9.88)
3-month Change*		15.23 (16.66)	0.56 (10.17)
6-month ⁴	40	132.83 (16.52)	79.53 (9.73)
6-month Change*		19.51 (14.95)	4.34 (8.82)

³ Blood pressure measures were averaged over month 3

⁴ Blood pressure measures were averaged over month 6

*Indicates reduction in measure

#MEDINF023 © 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED 22-03145-9

Thank You!

@TheInstituteDH #MEDINF023