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Introduction
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Accurate lymph node metastasis staging is critical for initial

Lung cancer is the leading cause of cancer-death worldwide. . :
treatment decision-making.

[1] Sung H, Ferlay J, Siegel RL. Laversanne M, Soerjomataram|, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancersin 185 countries. CA: A Cancer Journal for Clinicians. 2020.
[2] Navani N, Fisher DJ., Tierney JF. Stephens RJ, Burdett S, Rydzewska LHM, et al. The Accuracy of Clinical Staging of Stage I-llla Non-Small Cell Lung Cancer: An Analysis Based on Individual Participant Data. Chest. 2018:155(3):502-8.
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Radiomics methods Deep learning methods DL with auxiliary segmentation task

[1] Wang X Nan W, Yan 8, Li 0. Guo N, Guo Z MADS.II Radiomics Analysis Using SVM Predicts Mediastinal Lymph Nodes Status of Squamous Cell Lung Cancer by Pre-Treatment Chest CT Scan. Journal of Thoracic Oncology. 2018:13(10):8374-3
[2] Thao X Wang X. Xia W. i 0 Zhou L. Li 0. et al. A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage Tl lung adenocarcinoma. Lung Cancer. 2020:145:10-7.
[3] Ihao X. Wang X, Xia W, Zhang R. Jian J. Zhang J. et al. 3D multi-scale. multi-task, and multi-label deep learning for prediction of lymph node metastasis in Tt lung adenocarcinoma patients” CT images. Computerized Medical Imaging and Graphics. 2021; 33101387,
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Experiments and Results

—
Table I. The LNM prediction performances of the proposed model and baseline models.
AUC AP
Methods
« B8l patients Mean 8D Mean SD
o DEITII]gFBphiES, tumor biomarkers, disease Logistic regression 0.760 0.073 0.433 0.1
histories, and CT images Single-task model 0.780 0.073 0.448 0.18
Multi-task model 0.768 0.073 0.448 0113

e |0-fold cross validation for test

«  Another 5-fold cross validation for hyper- Table 2. The paired t test of the performances of the proposed model and baseline models.

: . Methods Pair t test of ALIC Pair t test of AP
parameter tuning and early stopping
. . o Logistic regression vs Single-task model 0.99 <00
* Repeating 10 times with different random seeds
Logistic regression vs Multi-task model <0.01 <0.01
Single-task model vs Multi-task model <0.01 0.83
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Discussion

o The proposed method does not require ROI annotations. And the pT labels are usually recorded in the pathology reports and easily obtained.
* As many types of cancer are evaluated by the TNM stage system, we can also extend this strategy to LNM prediction for other types of cancer.

* Instead of the multi-task learning, we can also extract the pl stage representations separately and then integrate them with other clinical features like

traditional radiomics methods, which may be more clinically acceptable.
o [Combining the cfDNA features with clinical and image features to achieve more precise LNM prediction.

* Exploring how to predict the LNM in the lymph node station granularity to provide more detailed information for clinicians.
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Conclusion

In this study, we proposed a deep multi-task netwark for LNM prediction. Experimental results show that the deep tumor pathological representations learned using

the auxiliary task can significantly improve the LNM prediction performance.
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