8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

Maturity Models in Biomedical Informatics: Current Status and Internationalization Workshop

Justin Starren – Northwestern University

Peter Embi - Vanderbilt University Medical Center

Jodyn Platt - University of Michigan

Adam Wilcox - Washington University in St. Louis

Outline

- Overview. What are maturity models? Dr. Embi
- Developing a Maturity Model, the CTME example Dr. Starren
- Using maturity models at your institution. Dr. Platt
- Where are we going, what can you do? Dr. Wilcox
- Discussion

Peter Embi – Vanderbilt University Medical Center

Dr. Justin Starren – Northwestern University

- Developing a new Maturity Model
- Clinical Trials Management Ecosystem (CTME) example

Define Need

- Clinical trial management (CTM) is a large, complex and expensive operation.
- CTM requires many different systems, not just a Clinical Trial Management System (CTMS)
- Current maturity instruments in the Clinical and Translational Sciences Award (CTSA) consortium only ask about CTMS.

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

Define Axes

Study management

Regulatory and Audit management

Financial management

Investigational product management

Subject Identification & recruitment

Subject management

Data

Reporting analytics & dashboard

System integration and interfaces

Staff training & personnel management

Organizational maturity and culture

Step 2: Define Levels

- Developed REDCap survey to solicit candidate statements for each maturity level for each axis.
 - Did Levels 1 and 5 first, then 2,3,4
- Statements clustered under Standardization, Complexity/Integration, and Monitoring
- Collaborative discussion and refinement of each statement.
 - 3-7 statements per level.
 - Over 200 individual statements

Step 3: Test and Refine

• Core group attempts to utilize instrument.

Timeline

Activity	Duration	Complete
Axes Defined	2 mo	Mar. 22
Level 1 & 5 Defined	4 mo	July 22
Intermediate Levels Defined	7 mo	Feb. 22
Review Draft Model	1 mo	Mar. 22
Redcap Survey Tool	2 mo	May 23
Initial CTSA Hub Survey	est	Oct. 23
Paper	est	Nov. 23

Jodyn Platt – University of Michigan

• Using maturity models at your institution.

Using maturity models at your institution

- Interviews (n=34, 1h, 3 institutions)
 - Focus on molecular tumor board
 - What is the current state of maturity of precision health (oncology) at your institution?
 - Facilitators and barriers to advancing maturity

- Workshop (n=18)
 - Focus on precision health

Overview of Key Findings

Current state:

- Knowledge and expertise gaps
- Need for institutional support
- Lacking LHS infrastructure
- Limited tools

Future Maturity Pathways:

- Better tools and tech
- Expanded NGS testing
- Greater education
- Improved access
- Data privacy & security solutions

Implications for Maturity Models:

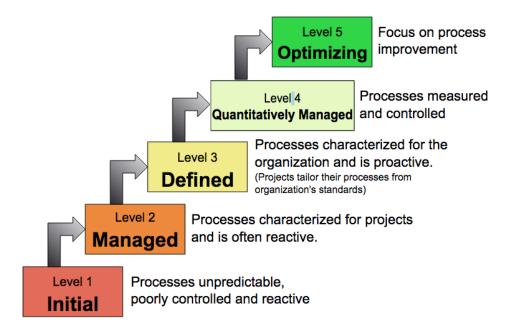
- Limited learning from practice
- Growing role of industry
- Proprietary v collective
 LHS

Strategies to Advance Maturity and use of MMs

- Value proposition
 - Stakeholder definition and engagement
 - Willingness to adapt
- Investing in "how"
 - Emerging technologies that augment clinical practice
 - Education and capacity building for stakeholders (patients and physicians)
- Responding to critical environment issues

Critical environment

- Policy enabling patient data sharing supports improvement, but cumbersome
 - HIPAA (clinical versus research)
 - Institutional policy
- Sequencing technology outpacing reimbursement designations
 - Payors tend to allow individual gene code stacking instead of creating standardized codes for large panel tumor profiling tests. It is unclear whether MTB decisions regularly play a role in the authorization for coverage process.
- Concerns about cost and accessibility for individuals and organizations

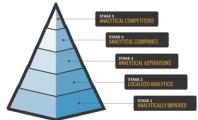


Adam Wilcox – Washington University in St. Louis

• Where are we going, what can you do?

Capability Maturity Model Integration

8 - 12 JULY 2023 | SYDNEY, AUSTRALIA


HIMSS Analytics Maturity Model

Stage 1: **Analytically Impaired**: Organizations at this level are "not data driven." They rely on gut feel and plan to keep doing so. They aren't asking analytics-driven questions and/or lack the data to answer them.

Stage 2: **Localized Analytics**: Organizations at this level are primarily "using reporting." They are doing analytics or reporting in silos.

Stage 3: **Analytical Aspirations**: Organizations at this level "see the value of analytics." They are still struggling to mobilize the organization and become more analytical.

Stage 4: **Analytical Companies**: Organizations at this level are "good at analytics." They are highly data oriented, have analytical tools and make wide use of analytics. They are still working on commitment to use analytics strategically.

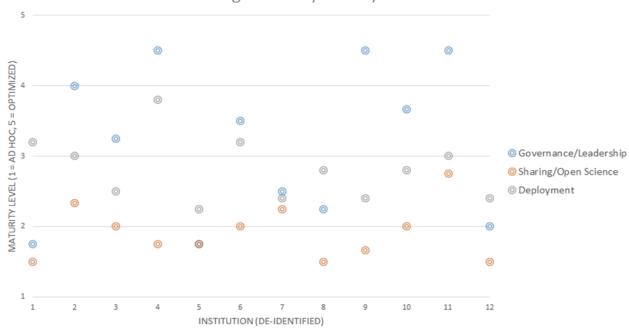
Stage 5: **Analytical Competitors**: Organizations at this level have reached "analytical nirvana." They use analytics broadly and deeply across the enterprise as a competitive differentiator.

The State of Analytics Maturity for Healthcare Providers. International Institute for Analytics and HIMSS Analytics, 2014.

D	DATA	BREADTH, INTEGRATION, QUALITY
E	ENTERPRISE	APPROACH TO MANAGING ANALYTICS
	LEADERSHIP	PASSION AND COMMITMENT
T	TARGETS	FIRST DEEP THEN BROAD
A	ANALYSTS	PROFESSIONALS AND AMATEURS

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

HEALTHCARE ANALYTICS ADOPTION MODEL


Data binding grows in complexity with each level

Level 8	Personalized Medicine & Prescriptive Analytics	Tailoring patient care based on population outcomes and genetic data. Fee-for-quality rewards health maintenance.		
Level 7	Clinical Risk Intervention & Predictive Analytics	Organizational processes for intervention are supported with predictive risk models. Fee- for-quality includes fixed per capita payment.		
Level 6	Population Health Management & Suggestive Analytics	Tailoring patient care based upon population metrics. Fee-for-quality includes bundled per case payment.		
Level 5	Waste & Care Variability Reduction	Reducing variability in care processes. Focusing on internal optimization and waste reduction.		
Level 4	Automated External Reporting	Efficient, consistent production of reports and adaptability to changing requirements.		
Level 3	Automated Internal Reporting	Efficient, consistent production of reports and widespread availability in the organization.		
Level 2	Standardized Vocabulary & Patient Registries	Relating and organizing the core data content.		
Level 1	Enterprise Data Warehouse	Collecting and integrating the core data content.		
Level 0	Fragmented Point Solutions	Inefficient, inconsistent versions of the truth. Cumbersome internal and external reporting.		

INFO23

8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

11 1 NFO 23

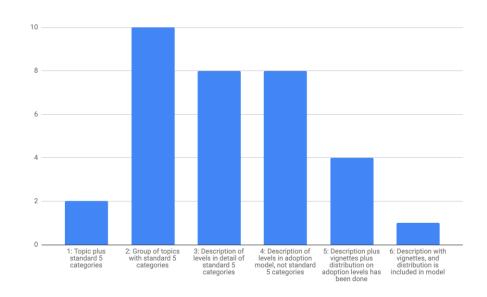
8 – 12 JULY 2023 | SYDNEY, AUSTRALIA

Research Data Sharing Capacity Maturity Model

Champieux R et al. Ten simple rules for organizations to support research data sharing. PLOS Computational Biology, 2023.

Governance **Process and Procedures Organizational** Incomplete Culture → Initial → Defined Infrastructure → Managed Workforce → Optimizing Development **Data Quality** and Reuse

Data Ethics Practices



Development Process

- Individual Expert
 - DELTA, Health Analytics Adoption Model
- Surveys/Interviews
 - RIDSM
- Expert Consensus
 - Research Data Sharing Capacity

Levels of Meta-Maturity

- 1. Single topic, standard 5 levels
- 2. Multiple topics, standard 5 levels
- 3. Detailed description of 5 levels
- 4. Adoption model, not standard 5 levels
- 5. Vignettes as descriptors; data distributions
- 6. Distribution as part of model

Links & Discussion

- Connect.amia.org/maturity (AMIA members only)
- <u>Justin.starren@northwestern.edu</u> (for CTME REDCap data dictionary)