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Session Objectives

« The panellists will explore the current and future state of synthetic data,
highlighting their ability to support data sharing, to address privacy and
confidentiality, and to advance national and international initiatives.

e Panellists will address the following topics:
« Statistical validation
* Privacy validation
* Enhancing data sharing and collaboration
* Industry partnerships
o lse in education and training programs
* Methodology and process of synthetic data generation
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"Synthetic Data Primer"
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Disclosure

Jon D. Marrow, M.D., was previously Senior Vice President at MDClone, Inc., a health [T software
company whose synthetic data product was used in some of the referenced studies.



MSB synthetic health data?

« Personal health data are highly protected and sensitive.

e Health data contain a vast amount of valuable information.

o [lata-to-knowledge work is often done by people not privy to
protected information (e.q., non-clinicians, consortium members, and
external commercial partners).




Wh_atare synthetic data?

« Maintain the utility, statistical properties, correlations, and higher-order
relationships of real data sets without containing or exposing the members of
the original set.

« Same format and suitability for analysis as the original.

* No one-to-one correspondence between members of the original and synthetic
data sets.

e A form of data anonymisation, but:
Synthetic data # Deidentified data
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Simulation vs computation

« Simulated synthetic data: Probabilistic synthesis to create large data sets,
useful for simulation, systems testing, training, and other uses (2g. Syathed”)

« Computationally derived synthetic data: Novel data set, usually (but not
necessarily) approximately the same size as the original, populated with new

data points to match the original's statistical properties (z.g, M0L/one i %)
ADANS") o

SYNTHEA is a registered trademark of The MITRE Corporation, Bedford, Mass., U.S.A.
MDCLONE ADAMS is a trademark of MDClone Ltd., Be’er Sheva, Israel.




Sthhetic data for Al

LOMPUTATIONAL

- m MODEL Wﬂ[l
DERIVATION W TRAINING 4/7/71/54/717//

* ML models trained on computationally derived synthetic data are equally valid
as models trained on the original source data from which the synthetic data
were derived.

* This allows ML models to be trained without exposing the original patients’
personal information and without compromising patient privacy.

Al = Artificial intelligence; PHI = Protected health information; ML = Machine learning.
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Validation studies: Questions answered

Does anyone look the same? Does it look the same?

Can you automatically identify people? Does it work the same?

Can you manually identify people? Does it work better than other approaches?

|t is a problem if people are identified? What can we do differently with synthetic data?

Does it solve the problem of linked data sets?
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Research and Applications

Spot the difference: comparing results of analyses from .
real patient data and synthetic derivatives Train Accuracy 0.845 0.864 0.852
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Background: Synthetic data may provide a solution to researchers who wish to generate and share data in sup-
port of precision healthcare. Recent advances in data synthesis enable the creation and analysis of synthetic

derivatives as if they were the original data; this process has significant advantages over data deidentification. AURDC [0.855 [.86 [1.847

Objectives: To assess a big-data platform with data-synthesizing capabilities (MDClone Ltd., Beer Sheva, Israel)

for its ability to produce data that can be used for research purposes while obviating privacy and confidentiality
concerns. Test AEEUFEEY 0.834 0.833 0.834

Methods: We explored three use cases and tested the robustness of synthetic data by comparing the results of

analyses using synthetic derivatives to analyses using the original data using traditional statistics, machine .«

learning approaches, and spatial representations of the data. We designed these use cases with the purpose of FFEI.‘.ISII]H [l E“ [|7EE| I] 825
conducting analyses at the observation level (Use Case 1), patient cohorts (Use Case 2}, and population-level

data (Use Case 3.

Results: For each use case, the results of the analyses were sufficiently statistically similar (P> 0.05) between REEE" [lE77 DE']B I]Eﬁll
the synthetic derivative and the real data to draw the same conclusions.

Discussion and conclusion: This article presents the results of each use case and outlines key considerations F' [I 738 [l 7IE I] 73‘

for the use of synthetic data, examining their role in clinical research for faster insights and improved data shar.
ing in support of precision healthcare.
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ABSTRACT

Background: Synthetic data may provide a solution to researchers who wish to generate and share data in sup-
port of precision healthcare. Recent advances in data synthesis enable the creation and analysis of synthetic
derivatives as if they were the original data; this process has significant advantages over data deidentification.
Objectives: To assess a big-data platform with data-synthesizing capabilities (MDClone Ltd., Beer Sheva, Israel)
for its ability to produce data that can be used for research purposes while obviating privacy and confidentiality
congerns.

Methods: We explored three use cases and tested the robustness of synthetic data by comparing the results of
analyses using synthetic derivatives to analyses using the original data using traditional statistics, machine
learning approaches, and spatial representations of the data. We designed these use cases with the purpose of
conducting analyses at the observation level (Use Case 1), patient cohorts (Use Case 2), and population-level
data (Use Case 3).

Results: For each use case, the results of the analyses were sufficiently statistically similar (P> 0.05) between
the synthetic derivative and the real data to draw the same conclusions.

Discussion and conclusion: This article presents the results of each use case and outlines key considerations
for the use of synther
ing in support of precision healthcare.

data, examining their role in clinical research for faster insights and improved data shar-
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Chlamydia rates (per 100 000 persons) by zip code:
real (left) versus synthetic (right) data.
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Prediction performance for the two models by receiver
operating characteristic curves (A, C) and precision-recall , s
e ace curves (B, D) by using original and synthetic data.
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SYNTHETIC DATA

-.empowers researchers to
produce valid results, over a
short period of time, while

protecting patient privacy.”
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Evidence based decision making in healthcare: what
is the problem?

Technical Cultural

 Privacy e Decision making
 Complexity  Priorities

o [uality o Action tracking
 Completeness o Trust




EaLahiIity Maturity

‘0 MPROVED
& LEARNING

= DATA LITERACY & USE

DATA DEMOCRATIZATION

CARE DIGITIZATION




Data Democratization

Human Data:

LU L L L

Non-Hum‘an Data:

RPN

G g GRS

Hospital

SMS | <®> AN | Emerg [\ | Radiology
! Notes Reports
Demographics

Cost
° ° I v T T L ﬂ
Birth Insulin Rx S}Jrg:ew: Readmission
CT Scan Results ! &

Rapid-acting Long-acting
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A new way of working together
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h Evalugte use and impact of Tranexamic acid in surgical patients

N Clinical Champion: Dr. Claudia Malic
. Department: Surgery

Definethe business case for sutnmatically substituting Provistin patients allergic tn iudinamd///
contrast media and needing urgent imaging 3
7 ». Impact of multi-pronged approach tn reduce inapprapriate use of

Clinical Champion: Drs. Blair MacPanald *Pregabalin during the pari-op periad

Department: Diagnosticfmaging DIAGNOSTIC N
/I IMAGING ANESTHESIOLOGY Clinigal Champion: Dr. Sarah Tierney
v Depattment: Peri-op Anesthesiology

Evaluate use andimpact Carbetocin / “. Evaluate the value of CT scan of the head in anticoagulated patients with
in patients undergoing E-sgnﬁun,” y < \ headinjury, and compare o findingsin Sheba Medical Centre
' [BSTETRICS

BYNECOLOGY
-

Q )/ v

QUALITY ANALYTICS INNOVATION
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MDCLONE
ADAMS Centre UNIVERSITY OF CALEARY
wr

Clinical Champion: Dr. Jessica I]y! ‘RAD"]I'I]E ‘:Elmmal Champian: Dr. Santanu Chakraborty
\Department: Radiology

Department: Obstetrics and Gynecology!
]

,” Describe demographic and clinical charecteristics of high versus low

Impact of multi-pronged approachto reduce overuse of urine cultures, \\\ /' frailty groups, using the CIHI-HFRM

urinalysis and antibiotics

/' Clinical Champion: Dr. Karen Tang

Clinical Champion: Drs. Derek Macfadden, Caraline Nott \\\ ,/I Partner: University of Calgary

Department: In-Patient Medicine \

OTTAWA PUBLIG HEALTH =
5 AMBULATORY CARE ' Jdeﬁﬁiy the health conditions accounting for the majority of in-patient hospital care costs asa

Describe the clinical and financial opportunities created by implementing three different m?d!lsjur _~* surrogate marker of disease burden.

providing routine ambulatory care laboratory testing - _
: Clinical Champion: Cameron McDermaid

Clinical Champion: Dr. Johnathan Mack T N Partner: Ottawa Public Health

Department: Ambulatory Care - -



Collaboration at scale

Digital Innovation
Ecosystems

Collaboratives Consortium

Improvement .:‘ - ’\ 7 Real-World Evidence
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Formal definition of synthetic data

« "Synthetic data are microdata records created to improve data utility
while preventing disclosure of confidential respondent information.”

« "Synthetic data is created by statistically modeling original data and
then using those models to generate new data values that reproduce 3
the original data's statistical properties.” SN

Philpott D. A Guide to Federal Terms and Acronyms. Bernan Press, 2017:184.




N 2,133

Age, mean = SD 32.5+b.7years

g Height, mean  SD [71.1+6.35 cm
A Lender 62.1% male
s 36.9% female
E 1.0% non-binary
= DN 8.2%
§ .L/0

BMI > 30 kg/m? 30.1%

OM amang BMI < 300 6.9%

DM amang BMI > 30 12.0%

N 2233

Age, mean =+ SD 30.9 + 5.8 years
E Height, mean = SD [711+6.35 cm
L\" Lender 62.1% male
~ 36.9% female
E 1.0% non-binary
N DM B.7%
é BMI > 30 kg/m? 39.1%

OM amang BMI < 30 6.9%

OM amang BMI > 30 12.0%

SD = Standard deviation; DM = Diabetes mellitus; BMI = Body mass index.



Gonorrhea Early Latent Syphilis

Manhattan
pop. .7 million

LIP codes 100xx

Brooklyn
pop. 2.6 million

ZIP codes H2xx

Case Rate Per 100,000 Population
5.2-347.3

D 347.4-9945
B 0946-22726

Maps: NYC Dept. of Health and Mental Hygiene. NYC STl Surveillance Report, 2021.




Computational derivation overview

« First, derive statistical models from the original data set.

* Then, sample novel synthetic data points to fit the models.

Original Patient Data

-

Kernel
Estimation

’
v

Estimated Distribution

—)

Sampling

e ee ¢
. .
. ..I '.
catr e,
"'":- 0"
ITaLs AN
A .
. % et
e
vazat e L,
et
gt e
e L *
. e
Y

Synthetic Patient Data

Figure adapted from: Foraker RE, Yu SC, Gupta A, et al. Spot the difference: comparing results
of analyses from real patient data and synthetic derivatives. JAMIA Open2020;3:557-66.




Computational derivation methodology

* For categorical variables, to mitigate the potential for an inference attack due to the finite
number of categories:

broup synthetic individuals who share identical categories.
If any group contains <k members, censor some discrete values until all groups contain 2k members.
Create clusters of < individuals, minimizing the scaled Euclidean distance between data points.

Replace each cluster's numeric variables with an alternate matrix with similar statistical properties, preserving
statistical characteristics for every pair of variables within each cluster.

The alternate matrix is selected randomly from the unlimited number of alternatives, resulting in an irreversible
transformation.

* To protect against a difference attack, slightly alter the population size.

Thomas JA, Foraker RE, Zamstein N, Morrow JD, Payne PRO, Wilcox A. Demonstrating an
approach for evaluating synthetic geospatial and temporal epidemiologic data utility:
results from analyzing >1.8 million SARS-CoV-2 tests in the United States National COVID
Cohort Collaborative (N3). /Amer Med inform Assoc2022;29:1350-65.







https://informatics.wustl.edu/mdclone/




Lessons learned

e dynthetic data benefits:
o Enhancing Al/ML training opportunities
* Accelerating research
* Facilitating data sharing
o Expanding data access to community partners / health dashboards

* Next steps:
« Expanding upon ‘information gain’ analyses

o Establishing an STL data hub
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The Use of Synthetic Electronic
Health Record Data and Deep
Learning to Improve Timing of
High-Risk Heart Failure Surgical
Intervention by Predicting Proximity
to Catastrophic Decompensation

Aixia Guo ™, Randi E. Foraker"?, Robert M. MacGregor®, Faraz M. Masood”,
Brian P. Cupps® and Michael K. Pasque®

" Institute for Informatics (), Washington University School of Medicine, St. Louis, MO, United States, 2 Department of
Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States, > Department of Surgery,
Washington University School of Medicine, St. Louis, MO, United States

Objective: Although many clinical metrics are associated with proximity to
decompensation in heart failure (HF), none are individually accurate enough to
risk-stratify HF patients on a patient-by-patient basis. The dire consequences of
this inaccuracy in risk stratification have profoundly lowered the clinical threshold for
application of high-risk surgical intervention, such as ventricular assist device placement.
Machine learning can detect non-intuitive classifier patterns that allow for innovative
combination of patient feature predictive capability. A machine learning-based clinical
tool to identify proximity to catastrophic HF deterioration on a patient-specific basis
would enable more efficient direction of high-risk surgical intervention to those patients
who have the most to gain from it, while sparing others. Synthetic electronic health
record (EHR) data are statistically indistinguishable from the original protected health
information, and can be analyzed as if they were original data but without any privacy
concerns. We demonstrate that synthetic EHR data can be easily accessed and
analyzed and are amenable to machine learning analyses.

Methods: We developed synthetic data from EHR data of 26,575 HF patients
admitted to a single institution during the decade ending on 12/31/2018. Twenty-seven
clinically-relevant features were synthesized and utilized in supervised deep learning and
machine learning algorithms (i.e., deep neural networks [DNN], random forest [RF], and
logistic regression [LR]) to explore their ability to predict 1-year mortality by five-fold
cross validation methods. We conducted analyses leveraging features from prior to/at
and after/at the time of HF diagnosis.

Results: The area under the receiver operating curve (AUC) was used to evaluate
the performance of the three models: the mean AUC was 0.80 for DNN, 0.72 for
RF, and 0.74 for LR. Age, creatinine, body mass index, and blood pressure levels
were especially important features in predicting death within 1-year among HF patients.

Frontiers in Digital Health | www.frontiersin.org 1

) | Volume 2 | Article 5

Cohort and Feature Construction
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* We used a traditional
adversarial approach to
assess the privacy
preserving nature of
synthetic data as compared
to de-identified data.

e [Jur results indicate that
synthetic data cannot be
confidently re-identified to
the same level as de-
identified data.
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Fingerprint Score Distribution
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Postoperative Pregabalin Use
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Weekly % of Pregabalin
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There is already a downward trend of pregabalin-use before the technology intervention, therefore cannot attribute
impact to BPA




Monthly Average Pain Score on Day 0

3
Pain scores did not increase
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Key Takeaway: Need to be more thoughtful in implementing decision support, and it is helpful to measure

patient impact

Next Step: Work with decision support team and clinicians




Radiocontrast Switching in ED
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Current evidence does not support the use of steroids because they are not
proven superior to contrast switching
(switch to a different low-osmolar/iso-osmolar contrast agent)



Distribution of CT Exams By Time from Order to Test
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Distribution of CT Exams By Time from Order to Test
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Key Takeaway: The better option for patients and staff is also better for the bottom line

- Work with clinical leaders to implement, monitor benefits
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Causes of Hospitalizations in
Ottawa
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v

Extend analysis to determine impact of EMR, covid-19, and other factors
Assess other diseases

Further analysis to determine possible explanations for decreasing cases
and lung cancer trends

Focused efforts within FSAs to address possible SDOH = impact of
screening, smoking behaviour, other environmental risks




