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ABSTRACT 

Although transportation has long been recognised as one of the critical factors for socio-economic 
development, it is responsible for many global greenhouse gas emissions and significant pollutants 
that cause severe health problem, especially in urban areas. Besides, the rapid development of 
transportation also brings great concern about energy security. To reduce the transportation 
system's side effects, Electric vehicles (EVs) have emerged as a promising solution toward 
sustainable transportation due to their positive impact on environmental issues and energy crisis. 
However, the adoption of EVs is still minimal compared to conventional gasoline vehicles due to the 
lack of appropriate charging infrastructure. Furthermore, the electrification of transportation may cost 
a significant amount of money and result in more congestion (i.e., en-route and charging congestion) 
due to EVs' routing and charging behaviours. Having these concerns in mind, in this study, we focus 
on answering the questions of where and how to deploy the charging facilities to promote the 
widespread adoption of EVs and improve the system performance in the presence of EVs. The 
objective is to minimise the investment cost of charging infrastructure and the en-route and charging 
congestion by capturing travellers' routeing choice behaviours with stochastic demand and driving 
range. The problem is first formulated as a bi-level optimisation problem to capture the mutual 
interaction between planning decision and traffic flow pattern on the network and then solved by a 
meta-heuristic. Finally, the proposed framework is tested through the numerical test, and some 
managerial insights into the facility planning and system performance also be provided. 
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INTRODUCTION 

Although transportation has long been perceived as the critical component for socio-economic 
development, this sector is responsible for a third of total global greenhouse gas emissions and 
significant pollutants that cause a severe health problem. In New Zealand, road transportation 
emissions in 2018 were up 2.0 per cent from 2017 and up 101.6 per cent from 1990 (StatsNZ, 2020). 
According to the statistics, on-road vehicles made up 42.6 per cent of all carbon dioxide emissions 
in 2018. Moreover, the significant increase in transport demand raises a big concern for energy 
security. In the US, transportation is responsible for 29 per cent of the total energy consumption, with 
92 per cent related to fossil fuel (Ngo, et al., 2020). People are starting to shift in favour of Electric 
Vehicles (EVs) to mitigate the adverse effects of transportation, which marks a new transportation 
electrification era. 

To be prepared for the upcoming electrification revolution of transportation, billions of dollars in 
subsidies for charging infrastructure have been provided by governments and automakers worldwide 
(IEA, 2019). In May 2016, the New Zealand Government announced the EV Programme, which 
aimed to help develop New Zealand’s EV market by reducing some of the barriers and investigating 
ways to encourage people to buy EVs. The Programme aims to increase the number of electric 
vehicles in New Zealand to have 64,000 electric vehicles on our roads by 2021. Besides, New 
Zealand already boasts more than 80 per cent of renewable electricity generation. Electrification of 
the transport sector, accounting for 36 per cent of energy use in New Zealand, will further drive the 
decarbonisation effort. The country aims to have an entire zero-emission bus fleet by 2040 
(SmartCitiesWorld.net, 2020). 

There are two necessary charging facilities currently deployed to serve EVs' users, including low-
power (level 1 and level 2 modes) and DC rapid charging (level 3 mode). While the low charging 
modes require several hours for a full recharge, the fast charging mode can handle the urgent need 
for charging in less than 10 minutes with much higher installation costs (Wu & Sioshansi, 2017). In 
New Zealand, there are 144 DC rapid charging stations on the North Island and a further 65 on the 
South Island. However, EVs' widespread adoption is still limited due to their limited driving ranges, 
long charging time, and insufficient charging facilities. This paper focuses on the fast-charging 
infrastructure for personal or private EVs due to their significant role in mitigating travellers' range 
anxiety (Guo, et al., 2018).  

The charging infrastructure deployment process can be stated as a chicken-and-egg dilemma. 
Although investment decisions of where to deploy facilities are costly and affect a long-time horizon, 
the charging stations need to be provided before observing the actual demand. It emphasises the 
stochastic nature of the charging facilities planning problem. Therefore, we put our effort to capture 
three primary sources of uncertainty in the present paper: travellers' demands, EVs' driving ranges 
and route choice behaviours. 

Finally, the electrification of transportation and infrastructure deployment also result in changes in 
traffic flow. Although more EVs can bring a cleaner and more energy-efficient transportation system, 
it sometimes may cause more congestion over the network (i.e., en-route and charging congestion) 
(Tran, et al., 2020). Optimising the charging locations assuming that the flow pattern remains 
unchanged may lead to an unreliable solution or a deterioration in network performance due to some 
re-routing of traffic responding to the changing of charging locations. Therefore, it is crucial to 
develop a systematic framework for deploying charging infrastructure to minimise the capital cost 
and reduce the congestion and environmental cost with consideration of stochastic driving range, 
charging congestion, and the mutual interaction between charging locations and traffic flow pattern. 

Having the motivation mentioned above and research gaps in mind, the paper's overall objective is 
to optimally deploy fast-charging stations to minimise the expected system cost. The expected 
system cost consists of the infrastructure investment on the charging stations, the expected 
monetary value of total travel time and the environmental cost. Furthermore, the drivers' route choice 
behaviour under stochastic demand and driving range is recognised and incorporated into the model. 
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MODEL FORMULATION 

The EVs-charging location problem can be categorized into node-based, flow-based, and 
equilibrium-based approaches depending on the charging demand pattern and route choice 
behaviours (Shen, et al., 2019). In this study, we adopt the equilibrium-based approach to avoid the 
deterioration in network performance due to the mutual interaction of re-routing behaviours and the 
charging locations decision. The problem is formulated as a bi-level optimization program with two 
different levels, as shown in Figure 1. The first-level decision-maker is the upper-level decision-
maker (leader) and the second level decision-maker is the lower-level decision-maker (follower). 

 

Figure 1. The bi-level framework 

At the upper level, the planner decides where and how many chargers to be deployed to minimize 
the expected system cost, including the charging infrastructure investment cost, the expected travel 
cost, and the environmental cost, according to a budget constraint and service level. The output of 
the upper-level is the planning decisions on the charging infrastructure. 

At the lower level, the equilibrium traffic flow is determined by solving a multi-class probit-based SUE 
model with Poisson demand (probit-based SUE-P) and multinomial conditional route choice. The 
traffic flow then will come back to the upper-level as an input. 

The proposed bi-level optimization model is formulated in (1) – (7). The used notations for the model 
are listed in Table 1. 

Symbol Definition 

𝐾 Set of nodes, 𝑘 ∈ 𝐾 

𝐴 Set of links, 𝑎 ∈ 𝐴 

𝑊 Set of all O-D pairs, 𝑤 ∈ 𝑊 

𝑁 Set of vehicle classes, 𝑛 ∈ 𝑁 

𝑃𝑤 Set of all path 𝑝 between O-D pair 𝑤 ∈ 𝑊, 𝑝 ∈  𝑃𝑤 

𝑥𝑘 Whether a charging station is located at location 𝑘 or not 

𝑢𝑘 Number of chargers placed at location 𝑘 

𝑦𝑝
𝑤,𝑛 Whether path 𝑝 between pair 𝑤 is feasible for vehicle class 𝑛 or not 

𝑞𝑤,𝑛 Mean of travel demand of vehicle class 𝑛 between O-D pair 𝑤 

𝑓𝑝
𝑤,𝑛 Mean traffic flow of vehicle class 𝑛 on path 𝑝 between O-D pair 𝑤 
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𝑞𝑎 Mean of aggregate traffic flow on link 𝑎 

𝑡𝑎 Mean of travel time on link 𝑎 

𝑡𝑝
𝑤 Mean travel time on path 𝑝 between O-D pair 𝑤 

𝑙𝑠,𝑝
𝑤  Length of sub-path 𝑠 on path 𝑝 between O-D pair 𝑤 

𝐷𝑛 Random driving range of vehicle class 𝑛 

𝔾𝑠,𝑝
𝑤,𝑛 Probability that driving range 𝐷𝑛 is smaller than the length of sub-path 𝑠 of path 𝑝  

Table 1. Notations 

min(𝑿,𝒇) PI(𝑿, 𝒇)

=  ∑ (𝑐𝑘  𝑥𝑘 + ℎ𝑘  𝑢𝑘) + 𝑣1
𝑘 ∈ 𝐾

( ∑ ∑ ∑ 𝑡𝑝
𝑤

𝑛 ∈ 𝑁

𝑓𝑝
𝑤,𝑛

𝑝 ∈ 𝑃𝑤𝑤 ∈ 𝑊 

+ ∑ 𝑊𝑘𝜆𝑘
𝑘 ∈ 𝐾

)

+ 𝑣2 ∑ 𝑞𝑎
𝑔
𝑒𝑎
𝑔

𝑎 ∈ 𝐴

 
(1) 

Subject to  

𝑿(𝒙,𝒖, 𝒚)  ∈  𝛺 (2) 

𝒇 ∈ argmin {Z(𝒇)

=  − ∑ ∑ 𝑞𝑤,𝑛𝔼[𝑚𝑖𝑛𝑝∈𝑃𝑤{𝑡𝑝
𝑤}|𝑡𝑤(𝒇)]

𝑛 ∈ 𝑁𝑤 ∈ 𝑊

+ ∑ 𝑞𝑎𝑡𝑎(𝑞𝑎)

𝑎 ∈ 𝐴

− ∑ ∫ 𝑡𝑎(𝑞𝑎)𝑑𝑞

𝑞𝑎

0𝑎 ∈ 𝐴

∶  𝒇 ∈  Ɵ} 
(3) 

𝑥𝑘 = {0, 1} (4) 

𝑢𝑘  ≥ 0 (5) 

𝑦𝑝
𝑤,𝑛 = {0, 1} (6) 

0 ≤ 𝑓𝑝
𝑤,𝑛  ≤ M𝑦𝑝

𝑤,𝑛 (7) 

The first term of the objective function is the capital cost incurred by installing charging stations and 

placing the chargers at each station. The station installation costs, 𝑐𝑘 may include site acquisition, 
utility provision, permitting, project management, etc., which can be estimated based on the average 
cost in a certain particular area. In contrast, the charger unit cost, ℎ𝑘 can be found varied due to the 
providers (Ghamami, et al., 2019).  

The second term of the objective function is the expected travel cost calculated by the monetary 

value of time, 𝑣1. The total travel time includes the expected en-route travel time and expected 
charging time at charging stations which are resulted from the route choice behaviour of travellers. 

The expected waiting time at charging station k, 𝑊𝑘 can be obtained by adopting the queuing theory 
with the arrival rate of EVs 𝜆𝑘 (Jung, et al., 2014). 

The final term of the objective function is the environmental cost. The on-road vehicles have been 
known as a significant contribution to the air pollution, including carbon monoxide (CO), volatile 
organic compounds (VOC), nitrogen oxides NOx and particulate matter (PM). In fact, on-road 
vehicles are responsible for most of CO emissions in the air (Yin, et al., 2014). In this paper, 
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therefore, we consider CO as an indicator of the level of air pollution generated by GVs while EVs 
can be seen as zero-emission vehicles. The total amount of traffic emissions then can be calculated 

by the product of the average amount of traffic emissions, 𝑒𝑎
𝑔
 and the GVs traffic flow on the network, 

𝑞𝑎
𝑔
 and converted into the monetary value by CO unit cost, 𝑣2. 

Constraint (2) presents the feasible space of the upper level, which are defined by Constraints (8) – 
(11). Constraint (8) entails the maximum number of charging stations to be located (according to a 
given budget). The relationship between charging locations and feasible paths is shown as in 
Constraint (9) and (10).  

In comparison with GVs, EVs’ users choose the route to minimize their perceived travel times and 
have to consider the feasibility of the selected route. EVs’ drivers are assumed to be willing to take 
a trip if the probability of running out of fuel during this trip is under a maximum acceptable risk 

threshold, 𝛼. In Constraint (11), we imply a chance constraint on the driving range to capture the 
problem's stochastic nature. It is worth to note that in this study, EVs’ drivers are allowed to have 
multiple en-route recharging with the stochastic charging demand. 

𝑢𝑘  ≤ 𝑚 𝑥𝑘                                  (8) 

[𝐷𝑛 −max(𝑙𝑠,𝑝
𝑤 )]𝑦𝑝

𝑤,𝑛  ≥ 0 (9) 

𝑦𝑝
𝑤,𝑛  >  

𝐷𝑛 −max(𝑙𝑠,𝑝
𝑤 )

𝐷𝑛
 (10) 

𝔾𝑠,𝑝
𝑤,𝑛  ≤  𝛼 + (1 − 𝑦𝑝

𝑤,𝑛) (11) 

Constraints (4) – (6) specify the binary decision vectors x, y and non-negative vector u. Constraint 
(7) is the side-constraints on feasible path flow due to limited feasible paths in which M is a large 
positive number. 

Constraint (3) is the lower level defined as an equivalent minimization, where Ɵ is the feasible space 
of path flow solutions defined by the flow conservation and following constraints (Sheffi, 1985). In 
our study, the equilibrium flows 𝒇 is corresponded to each locating solution 𝑿, 𝒇 = 𝒇(𝑿). The travel 

demand between O-D pair w is assumed to be Poisson, 𝑄𝑤 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑞𝑤). Consequently, the 
resulting path flows of each vehicle class n between O-D pair w follow independent Poisson 

distribution, 𝐹𝑝
𝑤,𝑛 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑓𝑝

𝑤,𝑛) (Nakayama & Watling, 2014) with the mean path flow which is the 

solution to the following equivalent fixed-point problem. 

𝑓𝑝
𝑤,𝑛 = 𝑞𝑤,𝑛 𝑃𝑟𝑝

𝑤,𝑛(𝑡𝑤(𝒇)) (12) 

𝑃𝑟𝑝
𝑤,𝑛 denotes the probability that vehicle class n choose path p between O-D pair w. 

SOLUTION METHOD 

The proposed bi-level framework is strong NP-hard due to the binary-type decision variables, 
stochasticity, and intractable structure. Therefore, it is non-viable to find an exact global solution to 
the problem. Instead, the meta-heuristic approach, such as Genetic Algorithm, Hill Climbing, 
Simulated Annealing, etc. usually might be applied to obtain a good solution in a reasonable amount 
of time. The comparison of such different algorithms is beyond the scope of this study. In the present 
paper, we have adopted a relatively new approach based on the Cross-Entropy Method due to its 
robustness and insensitivity to the initial solutions.  

The Cross-Entropy Method (CEM) was initially proposed by Rubinstein & Kroese (2004) as an 
adaptive variance minimization algorithm for estimating rare events probabilities on stochastic 
networks. Eventually, this method was adopted to solve both static and noisy combinatorial 
optimization problems effectively, including network design problems in the transportation field 
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(Ngoduy & Maher, 2012; Abudayyeh, et al., 2021). In general, the CEM consists of two steps: 

1. Generating the sample of candidate solutions using a given parameterized distribution; 

2. Updating the sampling distribution parameters to steer the problem towards the optimal 
solution over subsequent iterations.  

The details of CEM-based algorithm applied to solve deterministic fast-charging facility deployment 
problem as the bi-level program has been proposed in the study of Tran, et al. (2020). In the present 
paper, we extend this approach to consider the environmental cost, stochastic driving range, 
stochastic charging demand and charging congestion. Because charging infrastructure would 
probably not be erased and newly built for a gradual increase in demand, the charging station will 
be continuously used in later stages once it is deployed. 

Given that the location of charging stations and number of chargers are independent random 

variables with the (|𝐾|  ×  𝑚) success probabilities matrix 𝛾, where |𝐾| is the number of nodes in the 
network and m is the maximum number of chargers that can be located at one station. Corresponding 

to the charging locations, the vector of feasible paths 𝑦 then can be identified by the deterministic 
equivalence of chance constraints on driving range. 

𝛾 =  

(

 

𝛾1,0 𝛾1,1 ⋯ 𝛾1,𝑚

𝛾2,0 𝛾2,2 ⋯ 𝛾2,𝑚

⋮
𝛾|𝐾|,0

⋮
𝛾|𝐾|,1

⋱
⋯

⋮
𝛾|𝐾|,𝑚)

  (13) 

Accordingly, our problem is to minimize the cost function 𝑃𝐼(𝑋, 𝑓(𝑋)) over all 𝑋(𝑥, 𝑢, 𝑦) in set Ω: 

𝑧∗ = min𝑋 ∈ 𝛺PI(𝑋, 𝑓(𝑋)) (14) 

The above optimization problem can be associated with an estimation problem: 

𝑙(𝑧) = 𝑃𝑟(PI(𝑋𝑛, 𝑓(𝑋𝑛))  ≤ 𝑧) (15) 

Where 𝑋𝑛 is chosen on Ω from a probability density function 𝑓(𝑋, 𝛾) with sample size 𝑁 and 𝑧 is close 
to (but greater than) 𝑧∗. Generally, 𝑙(𝑧) is a rare-event probability. As presented in (De Boer, et al., 
2005), CEM approach can be used to find an importance sampling distribution so that all its mass 
concentrates in a neighbourhood of 𝑋∗. Therefore, the optimal or near optimal states can be obtained 
by sampling from such a distribution. 

To describe parameterized random mechanism for generating the charging solutions, we consider 

a solution 𝑋 =  (𝑋1, … , 𝑋|𝐾|) has |𝐾| independent components such that 𝑋𝑖 = 𝑗 with probability 

𝛾𝑖,𝑗, 𝑖 = 1,… , |𝐾|; 𝑗 = 1,… ,𝑚. Then, the parameter of sampling distribution at the 𝑡𝑡ℎ iteration can be 

updated using following formula \citep{botev2013cross}. 

𝛾𝑖,𝑗
(𝑡) = 

∑ 𝐼{(𝑃𝐼(𝑋𝑘 , 𝑓(𝑋𝑘))  ≤ 𝑧)} 𝐼{𝑋𝑘,𝑗 = 𝑗}
𝑁
𝑘=1

∑ 𝐼{(𝑃𝐼(𝑋𝑘 , 𝑓(𝑋𝑘))  ≤ 𝑧)}
𝑁
𝑘=1

,          𝑖 = 1,… , |𝐾|;  𝑗 = 1,… ,𝑚 (16) 

With the charging solution 𝑋, the vector of equilibrium path flow 𝑓(𝑋) can be obtained by solving the 
multi-class probit-based SUE model with Poisson demand. As mentioned above, the multi-class 
probit-based SUE model based on Poisson-corrected travel time function is adopted to identify route 
choice probabilities. The link perception errors are assumed to be the same for all vehicle classes 

and independently distributed for link 𝑎 as normal distribution, 𝑁𝑜𝑟(0, (∅ 𝑡𝑎(0))
2), with ∅ = 0.3 used 

in numerical tests (Clark & Watling, 2005). The SUE is estimated by using the route-based Method 
of Successive Average (MSA). 

In this paper, we use the convergence between best PI and worst PI during the last two consecutive 
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iterations as the stopping condition for CEM-based algorithm while setting the maximum number of 
iterations has been reached for the Method of Successive Average. Otherwise, one can stop the 
procedure when the distance between two consecutive parameter vectors is sufficiently small. 

NUMERICAL STUDY 

To illustrate the proposed framework's efficacy, the model is tested in a toy network with different 
scenarios of EVs’ driving ranges and charging demand. The network is used by both EVs and 
conventional gasoline vehicles (GVs) with the aggregate travel demands between O-D pairs as in 
Figure 2. Link lengths and free-flow travel times are also given in the figure. To gain insights on the 
impact of EVs driving ranges and EVs market share on the planning decision, we consider different 
scenarios of EVs' driving range under increasing EVs' penetration. All EVs in the network are 
assumed to have the driving ranges 𝐷𝑒 ~ 𝐺𝑎𝑚𝑚𝑎(50, 1.5), 𝔼[𝐷𝑒] = 75. 

 

Figure 2. The test-bed Network 

Without loss of generality, we assume the link length is the same as free-flow travel time in number 
which is labelled on each link, and the capacity of each link is 1,800 veh/h/lane. In both numerical 
tests, the aggregate travel demand between each O-D pair is assumed to be independent stationary 
Poisson with the mean and variance of 5,000 veh/h. The aggregate travel demands are chosen for 
the convenience of analysing the impact of en-route and charging congestion.  

Lacking the appropriate data, we assume all paths between the O-D pair are feasible for GVs due 
to their relatively long driving ranges (Jiang, et al., 2014) and the EVs driving ranges follow Gamma 
distribution due to its flexibility (de Vries & Duijzer, 2017). Maximum acceptable risk threshold in both 
cases is assumed to be 0.05. Besides, the value of time for all vehicle class is $20 per hour (Xu, et 
al., 2017), the cost of opening a new charging station and installing a charger are $250,000 and 
$1,000 respectively regardless of its location (EVSE, 2019). 

In the CEM-based algorithm, we first choose the typical sample size in the literature N = 1,000 and 

the elite sample proportion 𝜌 = 1%. At each iteration, the parameter vector is updated using the 
smoothing rate 𝛽 = 0.7. The stopping condition is zero difference between upper bound and lower 
bound during the last two consecutive iterations. All instances are solved using Python programming 
language on a computer equipped with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and usable RAM 
of 15.9 GB, running on Windows 10. 

The summary of the optimal location of charging stations, number of chargers and associated costs, 
i.e. travel cost, environmental cost, investment cost and expected system cost was presented in 
Figure 3 and Table 2. In general, the expected system cost tends to decrease when EVs' driving 
range increases while rising sharply when there are more EVs in the network. It can be seen that 
the investment cost, which results from the planning decision is highly dependent on the traffic 
pattern on the network. Therefore, the inappropriate deployment of charging infrastructure can 
increase both congestion and investment cost. 
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% 
EVs 

Travel 
time (min) 

Waiting 
time (min) 

Travel 
cost ($) 

Environmental 
cost ($) 

Installation 
cost ($) 

System 
cost ($) 

5.0% 660,985.68 3,261.93 221,415.87 106,971.79 1,230,000.00 1,558,387.66 

10.0% 642,776.26 7,287.68 216,687.98 98,710.40 1,640,000.00 1,955,398.38 

15.0% 648,075.63 12,054.83 220,043.48 94,130.74 2,050,000.00 2,364,174.22 

Table 2. The cost of charging facility deployment 

 

Figure 3. Charging facility deployment solution 

Although the electrification of transportation can bring long-term sustainability for urban areas, it is 
plausible that the network becomes more congested with the increasing EVs' penetration. However, 
the travel times can be reduced by increasing the number of charging facilities in the network. From 
an environmental perspective, using more EVs can help to reduce environmental cost caused by the 
pollutant emitted from GVs. However, environmental cost can increase when there are more EVs. 
This phenomenon happens because of the on-route congestion in the network. As shown in Table 
2, the charging congestion at charging station contributes just a small amount compared to on-route 
congestion and can be reduced by increasing the driving range of EVs. 

Meanwhile, the travel cost depends not only on the driving range and EVs proportion but also on the 
network's charging facilities. On-route congestion tends to be more serious when EVs' penetration 
increases, but it can be reduced by improving the EVs' driving range and providing more charging 
facilities. Therefore, it is worth mentioning that both driving range, the EVs penetration, and the 
number of charging facilities significantly impact the system performance. 

 

Figure 4. The convergence of planning solutions 

Figure 4 illustrates the convergence of PI values in three different scenarios over iterations. The 
CEM-based algorithm can effectively solve the charging location problem with a larger size network; 
however, the computational time is increased considerably with the network size. 
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CONCLUDING REMARKS 

In an effort to decarbonise transportation, EVs have been adopted worldwide. However, lacking 
charging infrastructure poses a significant challenge for the widespread adoption of EVs. In this 
paper, we proposed a systematic framework to deploy the fast-charging facilities under stochastic 
driving range, uncertain demand and charging congestion as one of the first attempts to solve the 
charging location problem considering the highly stochastic nature of the problem.  

Although more EVs can bring a cleaner and more energy-efficient transportation system, it 
sometimes may cause more congestion over the network (i.e., en-route and charging congestion). 
Therefore, the proposed framework not only minimise the capital cost but also reduce network 
congestion. The environmental cost caused by GVs is also captured. Numerical tests have shown 
that the proposed CEM-based approach can provide a good solution for such a complex problem. 

However, the computational cost remains a burden, especially for large-scale networks. Besides, 
the bi-level optimisation framework is a non-linear and non-convex optimisation problem in which 
there is no single approach to obtain a general global optimal solution. We leave the problem of 
reducing the computational cost for future study, which is part of the authors' ongoing research. The 
proposed can also be developed to capture the operational constraints (e.g., time windows) to apply 
for electric buses. 
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