The use of continues compaction control (CCC) for pavement construction quality control.

Gerhard van Blerk Principal Pavements Advisor

CETANZ Conference Rotorua Aug 2021

New Zealand Government

Define, specify, report and monitor the bearing strength of subgrade - and subgrade "improvement" layers.

California Bearing Ratio (CBR)

Developed around the 1930 with a CBR value = 100% based on high quality crushed aggregate

- 1.25mm/minute penetration rate.
- Record load at 2.5mm and 5mm.
- CBR = total load/standard load 100%.
- CBR at 2.5mm load is reported, if greater than 5mm load.
- If CBR at 5mm load is greater repeat test.

Limitations of CBR Values used in Pavement Designs

- Limited to laboratory and/or in-situ testing.
- Specific samples and/or test locations.
- Time consuming.
- Converting CBR to design modulus (E).
 E= 10 x CBR ????
- Correlation between CBR vs Scala (fine grained cohesive soils Austroads).
- Correlation between CBR vs BB deflections.
- Test results are specific test condition (moisture content/density e.g. draught)

Figure 8.4 Assigned CBR = Pavement Design Thickness

Earthworks Construction

- Scala 5 blows per 100mm (first 200mm) and 6 blows/100mm next 250mm depth. CBR = 2 x number blows/100mm ???
- Pavement design based on soaked/insitu CBR ≥ 12
- BB deflection 95th % >1.85mm and 2.0mm max

What is the impact on the test criteria, if construction takes place in a 60 year draught ???

Contract specifications for subgrade

Test	Frequency	Criteria
Proof Roll	100% Subgrade	Substantial Deflections/Designers approval
Benkelmen Beams	10 metre intervals each lane	95%ile of 1.85 mm & Max. of 2.00 mm
Scala Penetrometer	1 test to 450mm below Subgrade level every 100 m ²	CBR >12.5 (5 blows/100mm) in the top 200mm >6 in the next 250mm
Nuclear Densometer	20 metre intervals each lane	Various for dry density, moisture content, air voids etc.
In-Situ CBR	1 test every 1000 m ³	Design based on CBR = 12
Soaked CBR	1 test every 3000 m ³	Design based on CBR = 12

Laboratory Soaked CBR Test Results

- All samples were compacted at **optimum moisture content** using **heavy compaction**.
- All samples passes soaked CBR (in-situ completed at surface level)

Î	L	M	N	0		
		Subgrad	e - CBR's			
	North	bound	South	bound		
	Soaked	In-situ	Soaked	In-situ		
		60.00		20.00		
	85.00	85.00	85.00	85.00		
		35.00		135.00		
	45.00	55.00 45.00		95.00		

Sample	Soaked CBR	Wet Density	Dry Density
1	12	1.81 t/m ³	1.38 t/m ³
2	31	1.83 t/m ³	1.34 t/m ³
3	30	1.80 t/m ³	1.29 t/m ³
4	23.5	1.88 t/m ³	1.39 t/m ³
5	25	1.76 t/m ³	1.26 t/m ³
6	23	1.74 t/m ³	1.20 t/m ³

Soaked CBR on in-situ Field Samples (field density/moisture content)

Field vs Laboratory CBR

Sample	Soaked CBR	Wet Density	Dry Density	Sample	Soaked CBR	Wet Density	Dry Density
I	1.5	1.76 t/m ³	1.22 t/m ³	1	12	1.81 t/m ³	1.38 t/m ³
II	11	1.69 t/m ³	1.24 t/m ³	2	31	1.83 t/m ³	1.34 t/m ³
III	5	1.67 t/m ³	1.30 t/m ³	3	30	1.80 t/m ³	1.29 t/m ³
IV	17	1.78 t/m ³	1.26 t/m ³	*4	23.5	1.88 t/m ³	1.39 t/m ³
V	30	1.87 t/m ³	1.42 t/m ³	5	25	1.76 t/m ³	1.26 t/m ³
VI	9	1.70 t/m ³	1.28 t/m ³	6	23	1.74 t/m ³	1.20 t/m ³
VII	9	1.68 t/m ³	1.24 t/m ³				
VIII	25	1.84 t/m ³	1.46 t/m ³				
IX	11	1.78 t/m ³	1.26 t/m ³				
Х	7	1.82 t/m ³	1.32 t/m ³				
Average	12.55	1.76 t/m ³	1.30 t/m ³				

Scala (DCP) Subgrade Testing for Construction Compliance

D		U	U	E	F	6	п		J	N	L	R	3		0	v	vv	~	I	۷	M A
	No	orthboun	d									Southbour	nd								
							_														
Chaina	ige	100	200	300	400	500	600	700	800	900	1000	100	200	300	400	500	600	700	800	900	1000 1
7	20	30	20	23	23	15	25	18	13	15	8										
7	30	113	15	25	20	8	13	10	10	8	13	18	18	10	8	8	6	10	10	13	10
7	40	20										18	18	10	8	8	6	10	10	13	10
7	50	20	28	33	18	8	15	20	13	13	13	25	18	13	8	10	6	15	13	18	18
7	60	25	20	13	13	13	10	15	18	13	8	52	75	15	6	6	10	10	20	20	15
7	70	28	23	13	13	8	10	13	10	10	15	15	18	20	13	15	15	10	13	18	15
7	80	44	58	38	25	18	15	18	20	13	15	38	25	10	10	10	8	10	8	8	13
7	90	13	15	20	20	8	18	10	20	13	10	50	20	20	13	8	8	18	18	18	13
8	00	36	25	28	28	20	15	15	10	13	15	28	15	8	6	6	8				
8	10	13	15	15	18	20	13	10	10	18	15	30	20	10	8	8	8	10	18	13	13
8	20	25	18	18	15	18	13	13	20	15	10	10	20	25	8	10	8	10	10	10	8
8	30	18	18	15	8	6	6	10	10	20	20	20	13	8	8	8	6	6	15	36	28
8	40	18	23	15	8	13	13					15	13	20	15	18	15	15	20	13	151
8	50	23	18	8	23	20	10					28	18	10	6	8	8	15	10	10	13
8	60	18	13	25	15	10	10					13	15	151	151	20	13	20	8	10	18
8	70	20	20	25	15	10	6					38	13	8	10	6	25	18	28	20	20
8	80	20	18	13	25	23	15					15	10	25	20	10	15	13	13	10	6
8	90	23	15	15	18	20	20					33	13	15	18	13	6	10	18	18	28
9	00	25	15	10	20	18	13					20	13	10	6	13	13				
9	10	28	20	13	15	8	13					15	15	8	13	18	15				
9	20	23	18	10	20	15	13					20	20	28	10	20	6				
9	30	18	30	23	15	15	10					36	25	13	15	13	8				
9	40	13	18	15	8	8	6					23	20	13	15	20	13				
9	50	20	15	15	1035	18	18					30	13	15	15	23	15				
9	60	18	18	30	23	8	15					23	18	10	20	28	18				
9	70	25	20	10	13	8	6					15	13	13	20	8	8				
9	80	13	15	13	10	10	6					33	13	10	15	20	18				
9	90	23	23	18	10	10	6					20	23	23	8	15	10				
10	00	18	13	10	30	20	22					20	20	18	22	15	15				

- Understanding the behaviour of materials under dynamic loading.
- Finding alternative test methods to describe/measure bearing strength under dynamic loading.
- Measure compaction and density.

Bearing Plate Test

Test data shows a strong correlation between the following test equipment:

Ev1 ≈ Evd (LFWD)

Ev2 ≈ Evib (roller)

FWD back-calculations on silty/clay subgrade shows E = 35MPa (80th %)

Calibration of Bearing Plate and LFWD

Lightweight FWD

Test Results:

- Strong correlation between Evd and Ev1
- Static vs Dynamic Loading

CH 11500	im CL (LFG 1.0)	CH 11550	m SL (LFG 1.0)	CH 11600m FL (LFG 1.0)		
Test	E _{vd} (MN/m ²)	Test	E _{vd} (MN/m ²)	Test	E _{vd} (MN/m ²)	
1	43.6	1	51.7	1	54.3	
2	42.6	2	48.8	2	55.6	
3	42.9	3	53.6	3	56.8	
4	46.3	4	54.9	4	51.7	
5	61.8	5	42.7	5	47.2	
6	60.6	б	40.6	6	49.2	
7	58.7	7	48.9	7	42.6	
8	44.3	8	56.7	8	48.5	
werage E _{vd}	50.1	Average E _{vd}	49.7	Average E _{vd}	50.7	
v1 (MN/m ²)	50.0	E_{v1} (MN/m ²)	38.4	E_{v1} (MN/m ²)	52.6	
v_2 (MN/m ²)	134.3	E_{v2} (MN/m ²)	138.9	E_{v_2} (MN/m ²)	116.2	
v2/Ev1	2.7	E _{v2} /E _{v1}	3.6	Ev2/Ev1	2.2	
(MN/m^3)	83.0	Ks (MN/m ³)	69.0	Ks (MN/m ³)	86.0	

German Catalogue Pavement Design Approach

RStO 12

Draft

Chart 1 Construction methods with bitumen macadam on F2- and F3subgrade/substructure

					(thickness	in cm; —	Ev2 minimum va	lues in MN/m ²)
Line	Construction class	Bk100	Bk ₃₂	Bk ₁₀	Bk _{3.2}	Bk _{1.8}	Bk1.0	Bk _{0.3}
	B [million]	> 32	> 10-32	> 3.2 - 10	> 1.8 - 3.2	> 1.0 - 1.8	> 0.3 - 1.0	≤ 0.3
	Thickness of frost- resistant superstructure ¹⁾	55 65 75 85	55 65 75 85	55 65 75 85	<mark>45 55 65</mark> 75	45 55 65 75	35 45 55 65	35 45 <mark>5</mark> 5 65
	Asphalt base course	on frost blanket co	urse		a <u>s</u>			43
1	Bitumen macadam	12 22 120 Σ34 45	12 12 18 Σ30 × 45	12 12 14 Σ26 45 45 45	 10 12 Σ22 45 	t120	 120 14 14 54 <l< td=""><td><u>• 100</u> • 100 • 10</td></l<>	<u>• 100</u> • 100 • 10
	Asphalt base course					in strategies, som		
	Frost blanket course							
	Thickness of frost	- 31 ²⁾ 41 51	25 ³ 35 45 55	29 ³ 39 49 59	- 33 ² 43 53	25 ³ 35 45 55	17 ² 27 37 47	21 31 41 51

CCC roller specified in contracts as a compliance/performance test.

- Compliance Criteria
- Evib > 130MN/m2 (95th%)

(No value < 120MN/m2)

• Test full project area.

CCC - Documentation **GPS-Planview**

FULTON HOGAN

Waikoto Expressway Hamilton Construction

Description Project SH1 Hamilton Bypass Client Contractor Hamilton Bypass Lot Client Contractor 900 mm sand 14 May Layer Number of layer Field proof rolling 14 May 1 **Roller parameters** Model /Serial No. BW 213 BVC-5 / 101 586 74 1005 Filter Pass Last pass Pass type dynamic

Stored data

Processed surface 1093 m²

documented from - until 15.05.2019 23:43:43 - 16.05.2019 00:52:27

	AVG	Min	Max
EVIB [MN/m ²]	147	63	214
Amplitude [mm]	1.1	0.6	1.4
Frequency [Hz]	27	26	29
Velocity [km/h]	2.4	1.6	3.3

Statistic data

	EVIB [MN/m ²]		
	> 150	45	%
	141 - 150	23	%
	130 - 140	17	%
	< 130	15	%
Σ	130 - 150	40	%

AVG-value	147	MN/m ²
Increase	4	%
Standard deviation	19	

Summary/Conclusion

- CCC roller bearing capacity response of *full pavement area*.
- CCC roller bearing capacity response from materials at depth > 600mm.
- CCC roller testing under *dynamic loading* simulate traffic loading.
- Calibration process with multiple other criteria e.g. Bearing Plate, lightweight FWD, BB deflections, soaked CBR, density NDM (probe/direct transmission), Scala penetrometer.
- Contract specification to minimum CCC roller response for pavement layers e.g. 120MN/m2 for lower subbase layers.