

CETANZ Conference 2023 Aukaha Resilience August 9th - 11th, 2023 Distinction Hotel, Kirikiriroa Hamilton

TOWARDS ACHIEVING UNIFORM DENSITY IN GRANULAR LAYERS

Thorsten Froebel

Higgins Group

GRANULAR PAVEMENT LAYER DENSITY

PRESENTATION CONTENT

- Pavement Layer Density Why is it important?
- Density Testing The Process
- Nuclear Densometer Test Modes
- Catalyst Backscatter to Direct Transmission
- Density Lot Acceptance What are we trying to achieve
- Plateau Density Testing Direct Transmission versus Backscatter
- NZTA T/24 Specification and Notes The Journey and current status

PAVEMENT LAYER DENSITY – WHY IS IT IMPORTANT

- Unbound Granular Layers Stress dependent and correlation between rut resistance and density of granular / modified granular pavement layers – reduce the shakedown -> reduce early life rut
- Cement Bound Subbase Layers Rely heavily on density throughout the layer strength throughout and highest horizontal stress at the bottom of the layer
- Cohesive Subgrade materials Correlation between CBR and density/OMC

DENSITY TESTING – THE PROCESS

ROLLER SIZE VS MATERIAL TYPE AND LAYER THICKNESS

Figure 1 Guide to determine the appropriate primary compaction plant

NUCLEAR DENSOMETER (NDM) – TEST MODES

Test Modes

- NZS4407: 4.3 Backscatter Mode 75 to 100mm depth
- NZS4407: 4.2 Direct Transmission Mode depends on Probe depth
- Moisture Content detection Surface to 80mm depth

PP2O Expressway Cement Bound Subbase

 Met all PRs regarding Density (the way we have been testing to date – Backscatter)

HIGGINS

Issue with cores not being full depth

Extensive Trials to investigate various factors:

- Fines migration: Slurry vs No Slurry
- Particle Grading and Shape
- Compaction equipment
- Mixing energy
- Mixing Rotor (Wirtgen vs Bomag)

PP2O Trials

Typical Plateau Density Test using Direct Transmission

Plateau Density Test Mode	Backscatter	Direct Transmission
Primary Compaction: High Vibe	4 to 6 passes	14 to 18 passes
Secondary Compaction: Low Vibe	4 passes	2 passes
Final Compaction: Static (depends on cohesion, PSD, etc.)	20 to 50 passes	10 to 20 passes
Core extraction (% of layer depth)	30% to 60%	70% to 100%

Typical Density Results for a lot achieved with revised methodology that was driven by Direct Transmission Plateau density testing

CoV				3.95%				1.11%				2.95%
Position	ition Backscatter			100mm DT			200mm DT					
	WD	DD	MC	DoC	WD	DD	MC	DoC	WD	DD	MC	DoC
Pos.1	2.39	2.23	6.8	98.9%	2.33	2.17	7.4	96.1%	2.36	2.21	6.8	97.8%
Pos.2	2.38	2.25	6.0	99.4%	2.36	2.25	5.3	99.4%	2.26	2.13	6.1	94.4%
Pos.3	2.32	2.19	6.1	96.8%	2.35	2.21	6.1	98.0%	2.34	2.19	6.8	96.9%
Pos.4	2.38	2.25	5.9	99.4%	2.39	2.25	6.1	99.6%	2.29	2.15	6.6	95.0%
Pos.5	2.24	2.13	6.1	94.2%	2.34	2.21	5.8	97.9%	2.24	2.12	5.8	93.7%
Pos.6	2.27	2.13	6.6	94.4%	2.35	2.20	6.9	97.3%	2.37	2.21	7.3	97.6%
Pos.7	2.42	2.28	6.1	101.0%	2.39	2.27	5.6	100.2%	2.33	2.18	6.9	96.4%
Pos.8	2.36	2.20	7.5	97.5%	2.36	2.21	6.7	97.8%	2.40	2.21	7.9	97.6%
Pos.9	2.36	2.18	8.1	96.5%	2.36	2.20	7.2	97.5%	2.38	2.22	7.3	98.2%
Pos.10	2.29	2.14	7.3	94.6%	2.37	2.22	6.4	98.2%	2.35	2.22	6.1	98.2%
Pos.11	2.31	2.15	7.5	95.2%	2.36	2.19	8.0	96.8%	2.40	2.25	6.6	99.6%
Pos.12	2.36	2.20	7.3	97.3%	2.37	2.22	6.6	98.4%	2.32	2.17	7.1	96.0%
Pos.13	2.33	2.17	7.4	96.1%	2.34	2.20	6.9	97.3%	2.38	2.25	6.6	99.5%
Pos.14	2.33	2.19	6.5	96.9%	2.36	2.20	7.2	97.4%	2.36	2.21	6.9	97.7%
Pos.15	2.20	2.15	7.1	95.0%	2.37	2.22	6.6	98.3%	2.29	2.15	6.3	95.2%
Average				96.9%				98.0%				96.9%
10th %-ile				94.5%				97.0%				94.6%
Minimum				94.2%				96.1%				93.7%

- Do the Plateau Density test using BS, D100 & D200
- Density requirements for BS, D100 & D200 set at 95% Mean / 92% Min (usual Subbase requirements)
 HIGGINS

NZTA T/24: 2021 – released as a trial

DENSITY LOT ACCEPTANCE – THE END GAME

Shift towards NZTA T/23: Direct Transmission

- NZTA T/23: 2021 Estimation of the Density of compacted aggregate layers by DT
- For modified, bound and unbound granular pavement layers
- Provides calculation of the lower half and upper half of the layer
- Density Lot Acceptance (T/23):
 - NZS 4407: 4.2 (DT) used in parallel to NZS4407: 4.3 (BS)
 - No guidance given regarding the number of BS and DT test points
- Pragmatic recommendation:
 - 1 Lot = 5 tests per 1000 m2 (ok for Greenfields but would prefer 10 tests per 1000 m2 for Renewals)
 - Greenfields: 1 locations using DT and 4 locations using BS per Lot (1 test / 200 m2)
 - Renewals: 3 locations using DT and 7 locations using BS per Lot (1 test / 100 m2)

HIGGINS

NZTA T/24 SPECS AND GUIDANCE NOTES – INDUSTRY FEEDBACK

Over the past 6 months I have received several comments from industry regarding the T24 as we developed it. The general response has been:

- Fantastic, the standard is desperately needed
- Fantastic, but we need to include guidance on when to do it (it's not needed on every site), and how to decide what the most appropriate compliance MDD is
- Mmmmm, great and needed, but its going to cost a huge amount and reduce productivity substantially, especially at present frequency requirements
- Mmmmm, great and needed, but we cannot complete it during the 2 hours required.
- There are several others but all have a similar vein to the above.

I propose that we reconvene the work group in order to reassess the process so that we get a robust outcome that will accommodate the issues raised.

Kind regards

Rob Damhuis

Principal Pavement Engineer B.Tech Geotech Eng, H Dip Mat Testing (Civ), CMEngNZ (Eng. Technologist)

Programme and Standards, Engineering Standards E <u>rob.damhuis@nzta.qovt.nz</u> / W <u>nzta.qovt.nz</u> Mob: +64 22 095 4398

Hamilton / Level 1, Deloitte Building, 24 Anzac Parade PO Box 973, Waikato Mail Centre, New Zealand

NZTA T/24 SPECS AND GUIDANCE NOTES – THE WAY FORWARD

T/24 Working Group Meeting Outcome (May'2023)

- 15 sec until HV, LV and final cut off pass
- 60 sec test time at cut offs
- 2 test points
- Test pad: avoid transitions, safety zone considerations, roller > 10m away from NDM
- T/24 released with requirements in the B-Series through a TAN

Layer Thickness	≤ 100mm	≤ 200mm	> 200mm			
Primary Compaction (HV)	BS	DT-Full Depth	DT-Full Depth & DT-Half Depth			
Secondary (LV)	BS	DT-Half Depth	DT-Half Depth			
Static	BS	BS	BS + Half Depth			
Notes: When nearing cut off add next level testing.						

HIGGINS

CETANZ Conference 2023 Aukaha Resilience August 9th - 11th, 2023 Distinction Hotel, Kirikiriroa Hamilton

THANK YOU

Thorsten Froebel Higgins Group

