DEVELOPING A BENCHMARKING MODEL FOR NZ RCAS

Shamsheer Benepal

BE (Hons), ME Civil Engineering Civil Engineer – Transport Infrastructure Beca

Transportation Group Conference 2024

Civil Engineering, FEngNZ, IntPE Department of Civil and Environmental Engineering The University of Auckland

Dr Theuns F. P. Henning, Ph.D.

Sensitivity: General

CONTENTS

⁰¹ Background & Problem ⁰⁶ Reco

07

- 02 Methodology
- **O3** Analysis Variables

O4 DEA Model Development

05 DEA + TRM + NZTA

Recommendation

Limitations & Moving Forward

O1 Background

Some big challenges and opportunities for NZ to achieve more sustainable transport

- Economy
- Environment ullet
- Ageing road networks & limited RCA budgets

RCAs should refine road maintenance and management practices to deliver strong outcomes with maximum efficiency.

value as RCAs have varying drivers and priorities.

NZTA currently uses & reports on comparative analysis – limited **NOT COMPARING APPLES TO APPLES**

Previous research has proven the value of PERFORMANCE **BENCHMARKING through DEA.**

Sensitivity: General

DEA?

cy = <u>Weighted sum of Outputs</u> Weighted sum of Inputs

Efficiency =

Input Improvement Output Improvement

⊣ Input 5

RESEARCH FOCUS: IMPLEMENTATION OF DEA TO GET PRACTICAL & MEANINGFUL RESULTS.

Pros

Considers multiple variables that influence RCA performance, e.g., VKT/km, Maintenance Expenditure (\$/km), & PHI.

Inherent variable weighting system automatically presents all RCAs with the highest possible efficiency score. Complete freedom in allocating weighting to variables leads to 'unfaithful' & exaggerated RCA performance assessments.

O1 PROBLEM

DEA'S AUTOMATED VARIABLE WEIGHTING GIVES UNREALISTIC RCA EFFICIENCY SCORES

NEED REALISTIC BENCHMARKING MODEL – CONSIDERS KEY VARIABLES & HAS WEIGHT RESTRICTIONS

02 METHODOLOGY

(2)

VALIDATE DEA SCORES AGAINST EXTERNAL SUBJECTIVE ASSESSMENTS

O3 ANALYSIS VARIABLES

	VARIABLE	
S	Cost (\$/km)	(
	Urban/Rural Roads (%UR)	UN
	VKT/km (millions)	UN
	Pavement Health Index (PHI)	

DEA CATEGORY

CONTROLLABLE INPUT

N-CONTROLLABLE INPUT

N-CONTROLLABLE INPUT

OUTPUT

04 DEA MODEL DEVELOPMENT

TRIAL 1

EXP %UR VKT/km

EXP %UR VKT/km

DOUBLE ENDED WEIGHT CONTROL

SINGLE ENDED WEIGHT CONTROL

FINAL MODEL

EXP %UR VKT/km

ONLY EXPENDITURE RESTRICTED FROM THE MINIMUM END

05 DEA + TRM + NZTA

SUBJECTIVE ASSET TRM MANAGEMENT PRACTICE -ASSESSMENT **OBJECTIVE ON-GROUND** • DEA **OUTPUT ASSESSMENT**

SUBJECTIVE ASSET MANAGEMENT PLAN ASSESSMENT

TRIANGULATION OF DIFFERENT PERFORMANCE ASSESSMENTS

TRM vs NZTA AMP Score Comaprisons for LT RCAs

Efficient
Moderately Inefficient
Inefficient

06 RECOMMENDATION

For this study's variables, Expenditure (\$/km) should be restricted to a minimum 30%-50% weighting.

Beneficial to have RCAs with similar characteristics in clubs or peer groups.

Varied performance evaluations yield holistic understanding of RCA efficiency.

07 LIMITATIONS & MOVING FORWARD

LIMITATION:

Limited data set, so no environmental variables.

MOVING FORWARD:

Dynamics of DEA understood under restrictions, now expanding benchmarking model across SH NOCs with critical variables.

HAPPY TO TAKE QUESTIONS

