Let's do this!

Insightful solutions. Empowering advice.

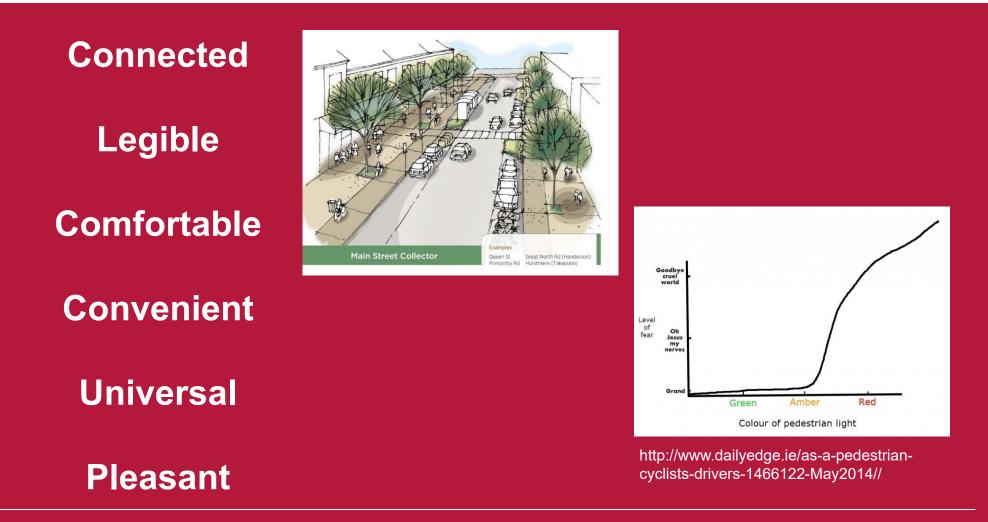
Customer Focus	 Walking as a mode Who is the 'customer' Customer expectations
Planning for walking	 Planning and design principles Quantifying benefits
Implementation	ChallengesWhat can we do better?

⊿labley

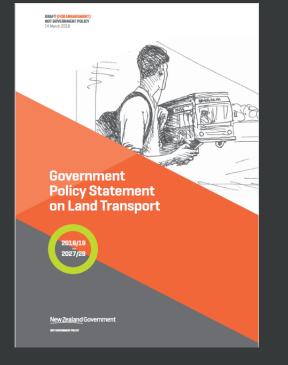
Independence

Freedom

Choice


Health

*∧*labley


Type of pedestrian On foot	Sub groups		Walking for fun/to local facilities
On small wheels Mobility impaired		Source: Pedestrian planning and design guide	

*∧*ıabley

*∧*ıabley

Funding Framework

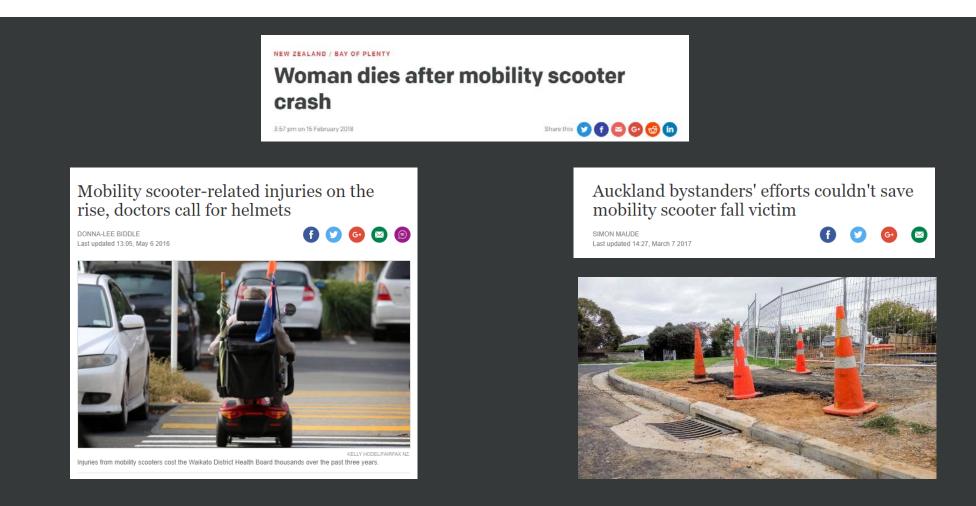
*∧*labley

Level of Service Research

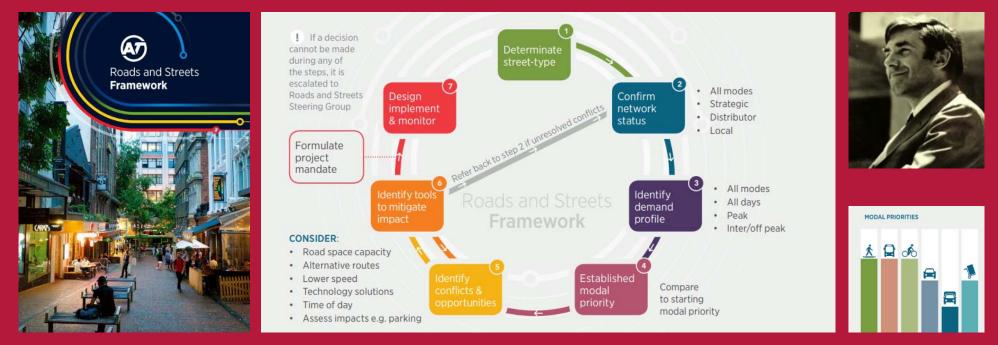
ISSUE - Lack of tools and data on pedestrian Level of Service

Level of service		Pedestrian	Bicycle	Freight	Car
A	No route delay. Always runs to timetable.	Opportunities to cross within 25 m. Minimal crossing delay.	High degree of separation. Minimal delay.	No delay. No variability.	No delay. No variability.
В	Minimal route delay and slight manoeuvring restrictions.	Opportunities to cross within 50 m. Average crossing delay is 30 sec.	Well separated at midblock with some conflict at intersections.	Minimal intersection delay.	Minimal intersection delay.
С	Stop at every set of signals. Within 5 min of timetable.	Crossing within 100 m. Average crossing delay is 45 sec.	On-road bicycle lane.	Stop at every set of signals.	Stop at every set of signals.
D	Always joining the back of an existing queue at an intersection and take two signal cycles to clear.	Crossing within 200 m. Average crossing delay is 60 sec.	On-road bicycle lane but no lane approaching major intersections.	Always joining the back of an existing queue at an intersection and take two signal cycles to clear.	Always joining the back of an existing queue at an intersection and take two signal cycles to clear.
E	Takes at least three signal cycles to clear intersection.	Crossing within 400 m. Average crossing delay is less than 90 sec.	Bicycles share traffic lanes.	Takes at least three signal cycles to clear intersection.	Takes at least three signal cycles to clear intersection.
F	Very low speeds, backups from downstream or right-turning traffic ahead of tram/bus significantly impacts traffic flow.	Crossing opportunities are more than 400 m from demand. Average crossing delay is more than 90 sec.	No special bicycle facility.	Very low speeds, backups from downstream significantly impacts traffic flow.	Very low speeds, backups from downstream significantly impacts traffic flow.

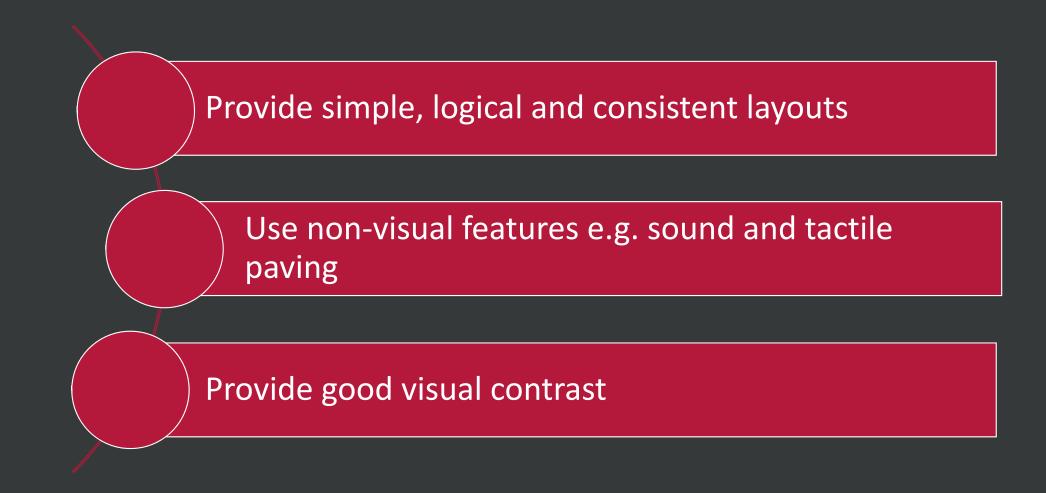
Work is underway in NZ....but still a way to go.


NZTA Research RR452: Predicting Walkability

What do you think are the priorities?


*∧*ıabley

Accessible environments?


Planning paradigm shift?

Source: https://at.govt.nz/media/1976084/roads-and-streets-framework-webcompressed.pdf

Providing walking environments for the customer – Let's do this! July 2018

⊿labley

Simple, logical, consistent layouts

Future proofing

<text><text><image><image><text>

The growing use of mobility scooters in Tauranga and the Western Bay of Plenty is forcing the council to adapt its infrastructure to make it safer and easier for riders to get around the city, says transportation manager Martin Parkes.

As one example, he noted that council staff had removed 420 steel "staples" blocking access to walkways along the Papamoa coastal strip in the past couple of years as part of Its tsunami evacuation preparation.

- Provide wider footpaths
- Technical staff and user training
- Better links to public transport
- Get the planning right at the beginning!
- PLAN FOR THE FUTURE OF
 WALKING

Thank you!

Tracy Fleming Abley Christchurch www.abley.com

e: tracy.fleming@abley.com

And for any more questions...

Come visit our stand and brush up on your tactile paving skills.

