HIWAY

CETANZ

Solid Density for Bituminous Granular Materials – What is Right?

COOL TITLE NICK, WHAT'S THE ISSUE?

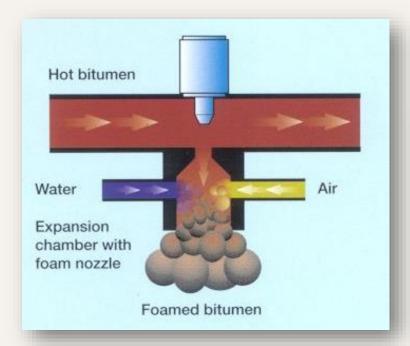
Solid Density is needed for:

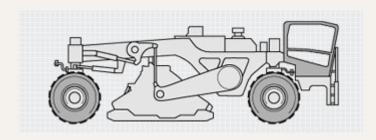
- MDD voids lines
- Degree of Saturation

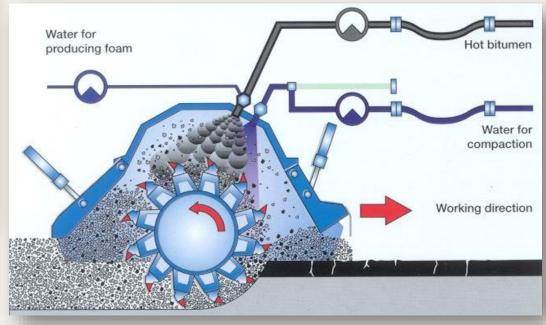
Traditionally, we haven't always done MDD or SD

Assumed or calculated SD for foamed bitumen

Not every aggregate has a quarry SD done – so the calculation can't be done unless we go to the lab

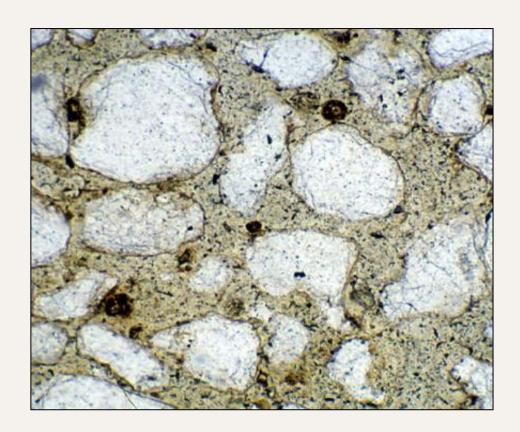

Guessing!!!


More rigor around QA means needing to test foamed bitumen SD


Tests were odd...

WHAT IS FOAMED BITUMEN RECYCLING?

WHAT IS FOAMED BITUMEN?


NOT granular

NOT asphalt

Fine particles are coated in bitumen

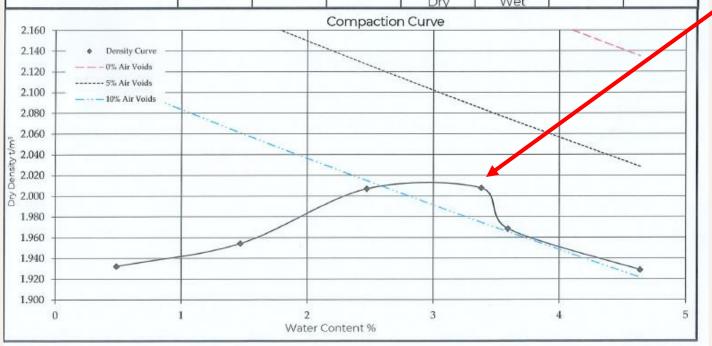
Large particles are not

NZS 4407 3.7.1 & 3.72 for granular

- ASTM C127 & 128 (and D2041) for asphalt
- Nothing for Foamed Bitumen

WHERE DID THIS START?

Solid density:


2.37 TP1 t/m³ (Tested)

Lab Ref No: AL10833/3

Source:

Client Ref No:

			1	Test Results				
Maximum dry density Optimum water content		2.00 3	t/m³ %		Natural wat Fraction tes	ater content 2.5 % ested Passing 37.5mm		
Sample ID		A	В	Nat	C	D	E	
Bulk density	t/m³	1.942	1.983	2.057	2.076	2.039	2.018	
Water content	%	0.5	1.5	2.5	3.4	3.6	4.6	
Dry density	t/m³	1.932	1.954	2.007	2.008	1.969	1.929	
Sample condition		Dry	Dry	Dry	Moist-	Moist-	Wet	

Voids too high for MDD

So voids lines are in the wrong place

Why? SD incorrect!!! Too low

WHERE DID THIS START?

Same material – different tests...and waaaay too low

IMPLICATIONS ON DOS

- Solid Density too high = DOS too low
- Solid Density too low = DOS too high
- Risk of sealing too wet or having to wait too long to seal when the surface is ready

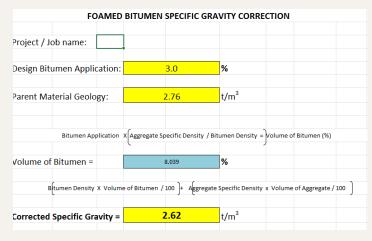
WHAT DO WE DO? WHAT DID WE DO?

NZTA T28: 2024

Test Method for the Determination of the Dry Density and Water Content Relationship of Aggregate

Compare different ways of doing it:

- NZTA T28: 2024 (MDD with modified SD test)
- MTSG using ASTM
- NZS 4407 3.7.1 (modified method)
 - 3.7.2 not a problem as larger stone has no bitumen
- Whole sample (4407 3.7.1 standard method)
- Calculate based on natural SD + bitumen density / content
 - This is how we previously assessed FB SD


NZS 4407:2015

New Zealand Standard

Methods of sampling and testing road aggregates

Superseding all parts of NZS 4407:1991

- T28 (NZS 4407 3.7.1 & 3.7.2) T28 modifies to have coarse fraction retained on 26.5mm for T28 not 19.0mm as per 4407 3.7.1)
 - Grading & proportioned by sample fraction
- NZS 4407 3.7.1 (minor fraction passing 19mm) modified with 15 minute vacuum prior to test
- Whole sample 3.7.1 fractions not split put it under suction prior to testing

WHAT HAPPENDED?

Compare different ways of doing it:

T28 looked pretty good – but issues with SD method with a bituminous material

During material dryback at 60° C on NZS 4407 - 3.7.1 sample (fine fraction – passing 19.0mm):

 bitumen encapsulated / clumped up the fine material – stopping water getting through

Bitumen sticking to tray etc. caused issues by loss of mass (bitumen and fines

etc) from material.

So needed to modify this method further...

WHAT ARE WE DOING NOW?

T28

For 3.7.1 – fine fraction:

- Start from the wettest point i.e. soak immediately for 24hrs
- Empty everything into tray including water wash out container to ensure everything removed.
- Dryback at up to 108°C no longer concerned over bitumen softening

More consistent results.

This from Stevensons (say different quarry) but used to assess the test method

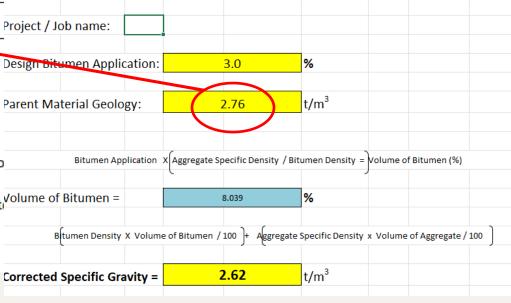
WHAT ARE WE DOING NOW?

Test Results								
Solid Density Method	FBS Sample	Natural Aggregate	Notes					
NZS 4407:2015 test 3.7.1	2.639 t/m3	2.749 t/m3	M2 Dry mass calculated using water content of sub sample. 1*					
(Aggs Pync)	2.635 t/m3	2.759 t/m3	M2 Oven Dried post test. 2*					
NZS 4407:2015 test 3.7.2 (Aggs Imers)	2.754 t/m3	2.750 t/m3	M2 Oven Dried post test. 3*					
NZTA-T28:2024 Combined Solid density	2.640 t/m3	2.760 t/m3	Calculated from M2 oven dried post test results.					
% Passing 26.5mm Sieve. 96%		96%	Frem: AL12093/I PSD Report					

If we are within approx. 50kg/m³ the DOS is not greatly affected.

Notes: Foam Bitumen sample foamed by WSP Auckland Lab. 1* & 2* - NZS 4407:2015 test 3.7.1 (Aggs Pync)

fraction passing the 26.5mm sieve tested, 3*- NZS 4407:2015 test 3.7.2 (Aggs Imers) fraction retained on the


26.5mm sieve tested. NZS 4407:2015 test 3.7.1 (Aggs Pync) & NZS 4407:2015 test 3.7.2 (Aggs Imers) departure fro

method, sample oven dried post testing / soaking for M2 Oven dried post tests results. 1*- M2 Dry mass

calculated using the water content of sub sample; a subsample of material passing the 26.5mm sieve was test

for water content, the water content was used to calculate the apparent dry mass of aggregate in the

pycnometer (M2) pre testing.

HIWAY

FOAMED BITUMEN SPECIFIC GRAVITY CORRECTION

CONCLUSION

Use modified T28 – i.e. start soaking fine fraction immediately (for 24-hours) to remove concern over bitumen clumping / softening during dryback.

If we are within approx. 50kg/m³ the DOS is not greatly affected.

With IDC's the Degree of Saturation is going to be very important – need to have

the Solid Density right.

Thank you

nick.schilov@hiway.nz

