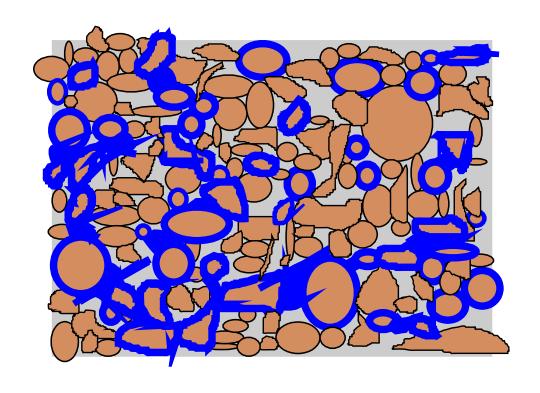
Leveraging the benefits of an integrated compaction

testing approach

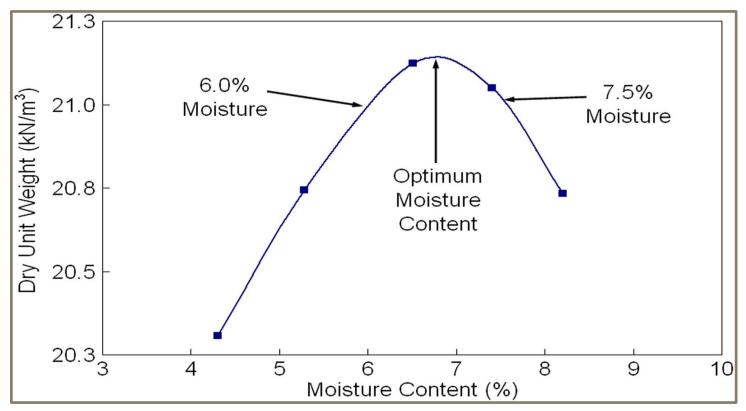
INSITUTEK

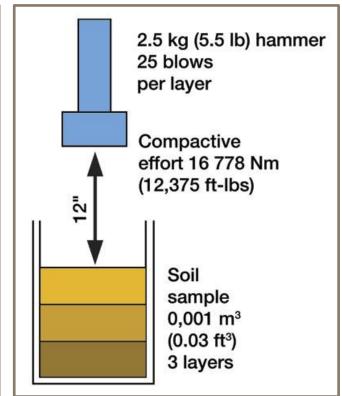
#### What is Compaction?

#### Soil Components:


- Mineral Particles
- Water
- Air
- Organic bits (must be removed)

#### Compaction:


- Reduction of air voids inside the mix
- Mechanical interlocking of particles


#### **Compaction Applications**

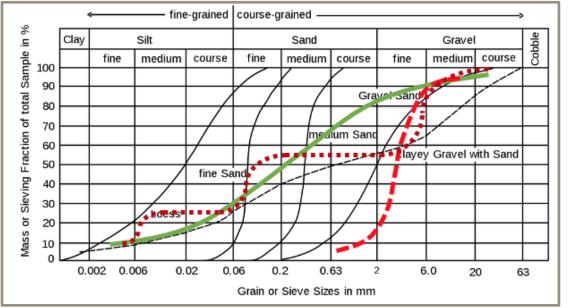
 Bulk earthwork, foundations, backfilling, and pavements



#### **Proctor Compaction Test**






Most commonly used - Mould A – 19mm Max Grain Size

**ASTM D698** 

#### **Particle Size and Distribution**

- Particle sizes & mix crucial to soil compaction
- Laboratory procedure "Sieve analysis": Tower of several sieves, size decreasing from top to bottom
- Particle sizes and distribution define soil class
- Typical curves:
  - Well graded soil: compacts well, sizes well balanced
  - Poorly graded soil: compacts less good, unbalanced size mix
  - Gap gradation: certain sizes missing, compacts less good





#### Why is Compaction Important?

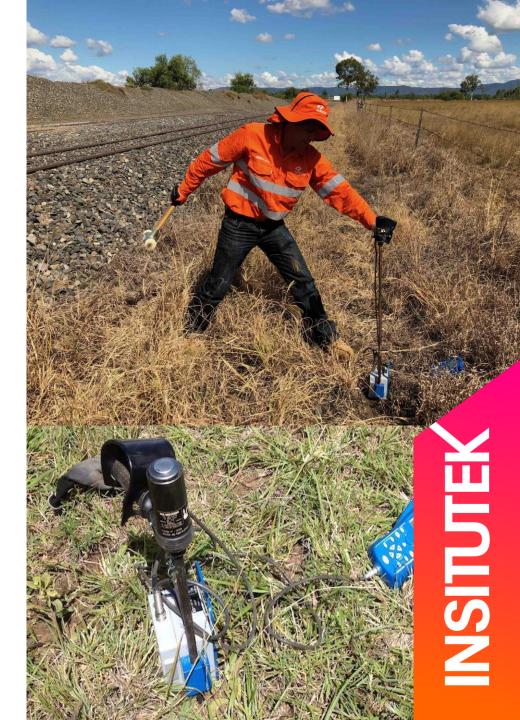
Crucial for the resilience and longevity of infrastructure

#### **How to Deliver Compaction Better**

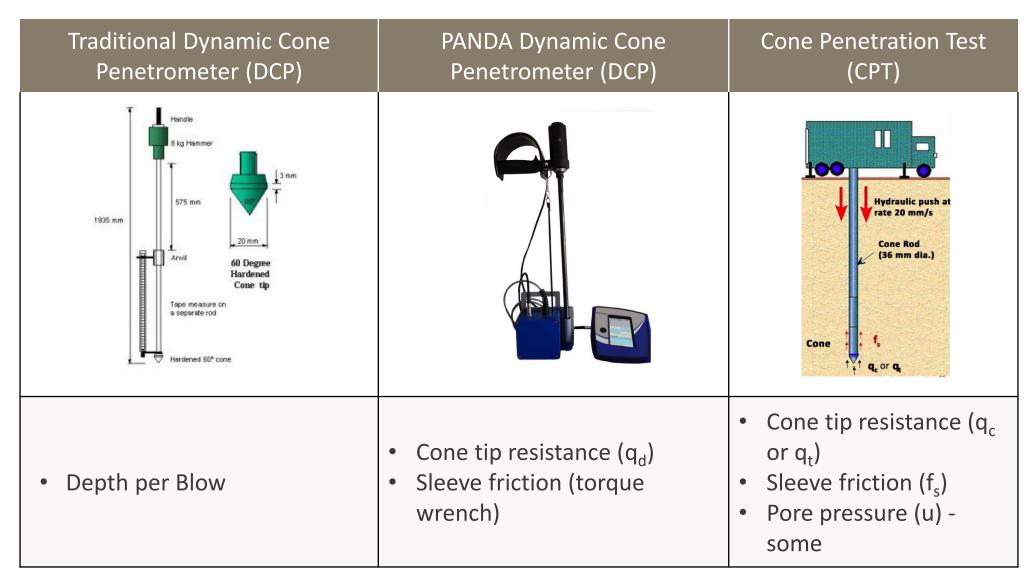
- Create uniform quantified compaction and deliver it as efficiently as possible.
- For best compaction outcomes, combine instrumentation on the compactors and with insitu
  measurements and real time feedback loops to create an Integrated Compaction Control System.
- Improvements in roller technology and insitu testing methods enable us to compact effectively to deeper depths. e.g. compacting insitu material (e.g. uncontrolled fill layers which may have otherwise been removed and replaced) or compacting material placed in thicker lifts.
- Outcomes: increased productivity, lower costs, improved quality, reduced risk and a reduced environmental impact.

#### **PANDA®** Dynamic Cone Penetrometer

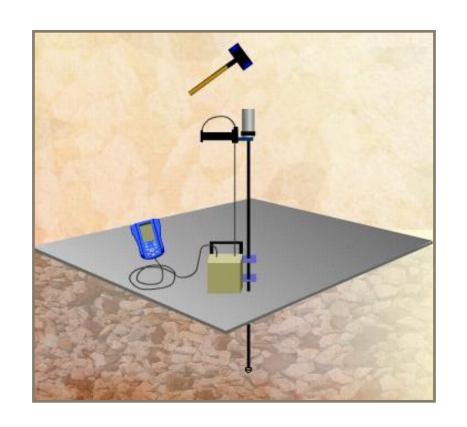
#### Principle:

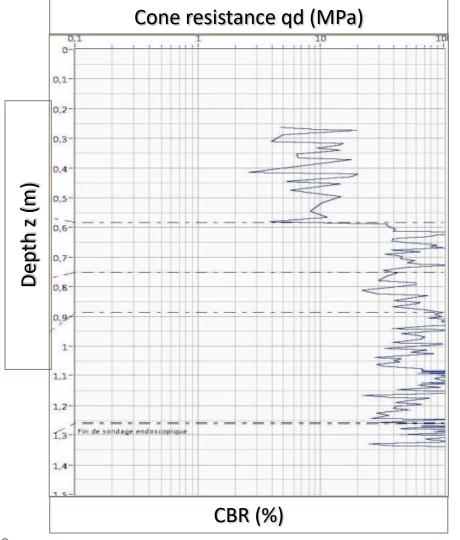

- Insert a cone
- Variable energy measured
- Depth per blow measured
- Control rod friction
- Granular soils up to 50 mm
- Report cone resistance (qd)
- Soil investigation & compaction control




French Compaction Control Standard NF XP 94-105

### PANDA® Versatility Compaction Control/Soil Investigation


- To minimise rod friction, cones larger than the diameter of the rods are used, enabling meaningful data to be collected below the 1-2m limitation of the conventional DCP
- Variable energy means the operator can change the force applied so more data points can be taken, for example, in weak materials.




#### **Sophistication Spectrum**



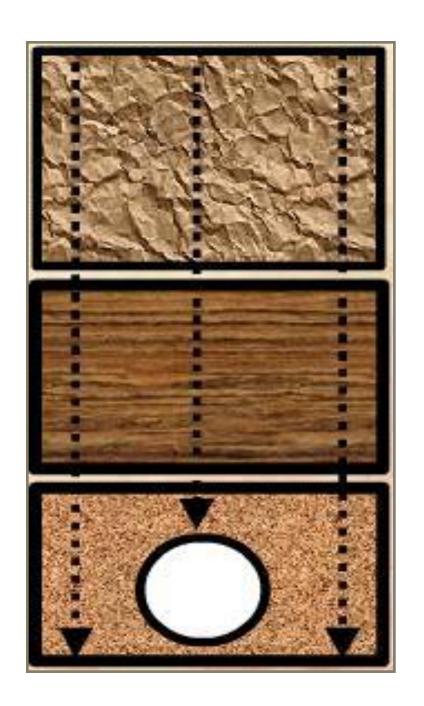
#### **PANDA®** Dynamic Cone Penetrometer





#### **Resistance / Density Relation**

A data bank connecting a range of levels of compaction (% OPN Standard Proctor or Modified Proctor OPM) to the cone penetration resistance (qd):


- for various soil classifications (AASHTO, USCS, DIN 18196, GTR, etc)
- for hydrous states (dry medium, wet, insensitive)





#### **Compaction Control Applications**

- French Standard: NF XP P 94-105
- Control through the depth of excavation
- Control layer by layer
- Layers' thickness monitoring
- Compaction homogeneity control
- Compaction control of all types of embankment (roads, general earthworks, dam walls, backfill etc)



### PANDA® Compaction Control Database of Soils

- Catalogued in terms of soil classification (plasticity, grain size distribution, water content) and level of compaction
- Over 2,500 data points
- Contains pass/fail qd curves for eighteen natural soil types and three artificial (crushed gravels) soil types.
- Provides target qd curves for two levels of compaction:
  - Standard Proctor (Standard Compaction)
  - Modified Proctor (Modified Compaction)
- For a given soil type and compaction energy, the PANDA® database provides a failure qd curve and a reference qd curve. The region between the two curves is called the tolerance zone.



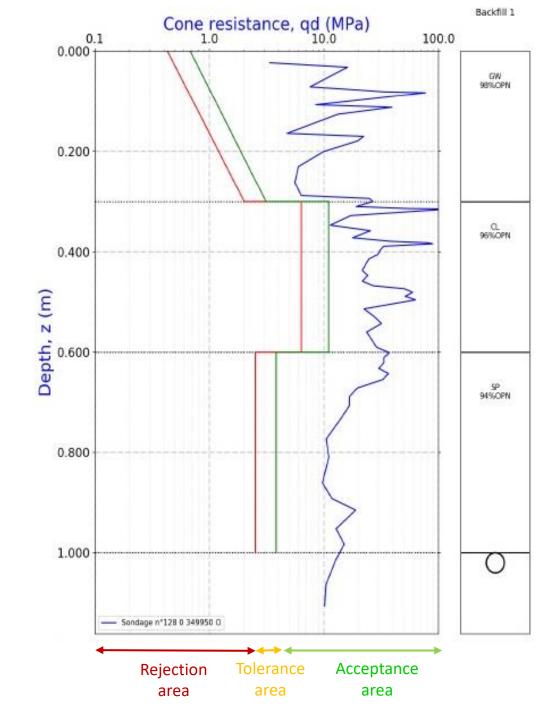
#### **PANDA®** Compaction Control Database Range

### Standard Proctor - From 85 to 105 % of the OPN by step of 1%

- When the reference is the Standard Proctor (OPN), the tolerance between the reference green line and the refusal red line is approx. 3% of the OPN
- e.g. 95% OPN for the reference and so 92% OPN for the refusal



#### Modified Proctor - From 85 to 105 % of the OPM by step of 1%


- When the reference is the Modified Proctor (OPM), the tolerance between the reference green line and the refusal red line is approx. 2% of the OPM
- e.g. 95% OPM for the reference and so 93% OPM for the refusal

### **Compaction Control Typical Output**

Interpretation of results

— Limit line q<sub>L</sub>

—— Reference line q<sub>R</sub>



#### **Dynamic Probing - DPSH Type B Test Principle**

- Hammer a rod and cone into the ground with a drop weight (63.5kg) falling from a fixed height (760mm) (constant energy)
- Measure blows per 10cm or 20cm (as well as depth per blow)
- GRIZZLY adheres to:
  - EN ISO 22476-2 Geotechnical engineering Field testing Part
     2: Dynamic probing DPSH-B
  - NF P94-063 Compaction quality control – Constant energy dynamic penetrometer method





#### **GRIZZLY®** Profile

- Electronic sensors (depth, blow counter)
- Automatic data acquisition
- Compaction control database
- Integrated software (analysis, anomalies calculation, reporting, correlations)
- Safety controls
- Soil granularity up to 150 mm
- Measures until the target depth
  - Depth per blow (mm/blow)
  - Cone resistance (MPa)
  - N10, N20 and N30
- Variable energy option



#### **GRIZZLY®** Capability

- Soil investigation
  - Variable Energy
- Compaction Control
- Geotechnical Drilling
- Soil Sampling
  - Windowless Push Tube
  - SPT Split Spon
- Powerful 11 tonne hydraulic rod extraction
- GPS location, date & time stamp

#### **Density versus Stiffness**

"Density", "Bearing capacity" & "Stiffness" are NOT equivalent

|       | Density                                                                     |                                                                     | Bearing capacity                                                                                                                                                  | Sti                                                                                 | ffness (Elasticity) - a material's ability<br>to resist deformation under load:                                                  |
|-------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0 0 0 | by volume) Static, physical material property Popular but vague performance | 0                                                                   | between a foundation and the soil underneath, which should not produce shear failure in the soil  Assessment of material behaviour under load (typically static), | 0                                                                                   | Temporary & reversible material deformation under load (static or dynamic) Strong performance indicator for pavement foundations |
|       |                                                                             | important criteria for designing building foundations & performance |                                                                                                                                                                   | Pavement performance-<br>based quality control &<br>assurance for<br>compacted soil |                                                                                                                                  |

### Measuring Compaction: Fundamental Changes

#### From Density to Stiffness

 Stiffness is the basis for calculating an even more fundamental material property, "modulus," which experts agree is the most accurate and independent means for judging deformation and, thus, a material's level of compaction.

\* Stiffness is loosely defined as a measure of a material's ability to resist deformation under load



#### **Compaction Control Approaches**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Traditional           | Modern                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|
| Design basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stiffness / Modulus   | Stiffness / Modulus                         |
| Measured values (specification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density / CBR         | Static or Dynamic Modulus                   |
| In-situ test methods  Vicinity of the street |                       | Plate Load Test  Light Weight Deflectometer |
| DCP / Scala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nuclear Density Meter |                                             |

#### **Trailed Falling Weight Deflectometer (FWD)**





#### Plate Load Test on GeoGrid



#### Plate Load Test in a nutshell

- Determine the allowable and ultimate bearing capacity of the ground
- Determine likely settlement under a given load
- By measuring the modulus value, the Plate Load Test provides the link between the design specification (design modulus value) and the actual site condition (in-situ modulus value).







Load cell

Inductive displacement transducer

The load-settlement curve parameters are measured by the sensors.

### What Does It Do?

#### The LWD can be used for:

measuring deflection

plotting the Load-settlement (deflection) curve

calculating Strain moduli of the first and the second loading cycles, Ev1 and Ev2

calculating the Ratio Ev2/Ev1 (a figure for the degree of compaction)

calculating the Ratio Ev2/Ev1 (a figure for the degree of compaction)



#### **AX01** Plate Load Test

- Fully Instrumented
- Removing the Safety Risks
- Reduces the Test Duration to 30 mins (setup, test and results presented)





| PLATE BEARING TEST<br>DIN 18134-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Manufacturer: ANIX GmbH Device no: #4000 Lever ratio: 1:1.00 Plate dia.: 300 mm Card: #040610164116/1 Date: Fr 04,06.10 16:35 Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |  |  |  |  |  |  |  |
| s:1.0mm/cm o:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00kN/m²/cm   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |  |
| Ev1 = 29.0 MN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | !!<br>'m²    |  |  |  |  |  |  |  |
| Ev2 = 78.9 MN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |  |  |  |  |  |  |  |
| Ev2/Ev1 = 2,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111          |  |  |  |  |  |  |  |
| a service of the serv |              |  |  |  |  |  |  |  |
| Nr. σ[MN/m²]<br>First loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slmml        |  |  |  |  |  |  |  |
| 0 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00         |  |  |  |  |  |  |  |
| 1 0.0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.15         |  |  |  |  |  |  |  |
| 2 0.1600<br>3 0.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.08<br>2.87 |  |  |  |  |  |  |  |
| 4 0.3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.25         |  |  |  |  |  |  |  |
| 5 0 <b>.4</b> 200<br>6 0 <b>.5</b> 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.80<br>4.21 |  |  |  |  |  |  |  |
| Unloading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.21         |  |  |  |  |  |  |  |
| 7 0.2500 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |  |  |  |  |  |
| 8 0.1250 3.00<br>Second loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |  |
| 9 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.59         |  |  |  |  |  |  |  |
| 10 0.0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.22         |  |  |  |  |  |  |  |
| 11 0.1600<br>12 0.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.53<br>3.78 |  |  |  |  |  |  |  |
| 13 0.3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.98         |  |  |  |  |  |  |  |
| 14 0.4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.13         |  |  |  |  |  |  |  |

| Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NIX Gr<br>sion Electronic                                                                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                              | Test-No.:<br>Appendix of :           |                           |                                              | -<br>-            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|----------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   | Plate                                                                                                                | e Bearing                                                                                                                                                                    | Test DIN 18                          | 3134-300                  |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                 | Static Plate Bea                                                                                                     | Tester: AX01, M<br>ring Test DIN18                                                                                                                                           | anufacturer: Anix<br>134-2001 and TF | GmbH<br>PBF-StB, Teil E1, | 1993                                         |                   |
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           | Record number:                               | : 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           | Card number .:                               | 230903115428      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           | Start of test:                               | 23.9.03 11:54     |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           | End of test:                                 | 23.9.03 11:57     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           | Device number:                               | 22                |
| Weather/Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           |                                              | 300 mm            |
| Prev. day:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           | Lever ratio:                                 | 1:2,00            |
| Test point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           |                                              |                   |
| Test depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      | Plate base:               |                                              |                   |
| Layer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 2 22                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                              | Moisture co                          | ntent below plate:        |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.9.03                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                              |                                      | Stamp, sign:              |                                              |                   |
| Operator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                                                                      | ı                                                                                                                                                                            | I - DAN/                             | Actual values             | Nominal values                               | Rating            |
| Resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ults                                                                                                                                                                                                                                                                                              | a.                                                                                                                   | a.                                                                                                                                                                           |                                      |                           |                                              |                   |
| Resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                   | a <sub>1</sub>                                                                                                       | a₂<br>-9.0336                                                                                                                                                                | σ <sub>0max</sub> [MN/m²]<br>0.5000  |                           |                                              |                   |
| Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ulus E <sub>v1</sub> [MN/m²]                                                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0                      | ≥ 27 *)                                      | Ok.               |
| Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                              |                                      |                           |                                              |                   |
| Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45                              | Ok.<br>Ok.        |
| Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45                              | Ok.<br>Ok.        |
| Strain modu<br>Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45                              | Ok.<br>Ok.        |
| Strain modu<br>Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45<br>≤ 3,0                     | Ok.<br>Ok.        |
| Strain modu<br>Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45<br>≤ 3,0                     | Ok.<br>Ok.        |
| Strain modu<br>Strain modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]                                                                                                                                                                                                                                      | 12,2695                                                                                                              | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45<br>≤ 3,0                     | Ok.<br>Ok.        |
| Strain modu<br>Strain modu<br>Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulus E <sub>v1</sub> [MV/m²]<br>ulus E <sub>v2</sub> [MV/m²]<br>Ratio E <sub>v2</sub> /E <sub>v1</sub>                                                                                                                                                                                            | 12,2695<br>6,6371                                                                                                    | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45<br>≤ 3,0                     | Ok.<br>Ok.        |
| Strain modu<br>Strain modu<br>Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulus E <sub>v1</sub> [MN/m²]<br>ulus E <sub>v2</sub> [MN/m²]<br>Ratio E <sub>v2</sub> /E <sub>v1</sub>                                                                                                                                                                                            | 12,2695<br>6,6371<br>Deflection                                                                                      | -9,0336                                                                                                                                                                      | 0,5000                               | 29,0<br>78,9              | ≥ 27 *)<br>≥ 45<br>≤ 3,0                     | Ok.<br>Ok.        |
| Strain modu<br>Strain modu<br>Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulus E <sub>v1</sub> [MV/m²]<br>ulus E <sub>v2</sub> [MV/m²]<br>Ratio E <sub>v2</sub> /E <sub>v1</sub>                                                                                                                                                                                            | 12,2695<br>6,6371                                                                                                    | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain modu Strain modu Strain modu Remarks: Last- stufe First loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulus $E_{v1}$ [MN/m²] ulus $E_{v2}$ [MN/m²] Ratio $E_{v2}$ / $E_{v1}$ Ratio $E_{v2}$ / $E_{v1}$ Load $\sigma_{\sigma}$ [MN/m²]                                                                                                                                                                    | 12,2695<br>6,6371<br>Deflection<br>s [mm]                                                                            | -9,0336                                                                                                                                                                      | 0,5000<br>0,4200                     | 29,0<br>78,9              | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.        |
| Strain modu<br>Strain modu<br>Remarks:<br>Last-<br>stufe<br>First loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Julus E <sub>v1</sub> [MN/m²] Julus E <sub>v2</sub> [MN/m²] Ratio E <sub>v2</sub> /E <sub>v1</sub> Load  G <sub>o</sub> [MN/m²]                                                                                                                                                                   | 12,2695<br>6,6371<br>Deflection<br>s [mm]                                                                            | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain modu Strain modu Strain modu Remarks: Last- stufe First loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulus $E_{v1}$ [MN/m²] ulus $E_{v2}$ [MN/m²] Ratio $E_{v2}$ / $E_{v1}$ Ratio $E_{v2}$ / $E_{v1}$ Load $\sigma_{\sigma}$ [MN/m²]                                                                                                                                                                    | 12,2695<br>6,6371<br>Deflection<br>s [mm]                                                                            | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain modu<br>Strain modu<br>Remarks:<br>Last-<br>stufe<br>First loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ulus E <sub>v1</sub> [MN/m²]  ulus E <sub>v2</sub> [MN/m²]  Ratio E <sub>v2</sub> /E <sub>v1</sub> Load  σ <sub>o</sub> [MN/m²]                                                                                                                                                                   | 12,2695<br>6,6371<br>Deflection<br>s [mm]                                                                            | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain modu<br>Strain modu<br>Remarks:<br>Last-<br>stufe<br>First loading<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Load  σ <sub>c</sub> [MN/m²]  Load  σ <sub>c</sub> [MN/m²]  0,0100  0,0800  0,1600  0,2500  0,3300                                                                                                                                                                                                | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25                                                                          | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain modu<br>Strain modu<br>Strain modu<br>Remarks:<br>Last-<br>stufe<br>First loading<br>1<br>2<br>3<br>4<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Load σ <sub>o</sub> [MN/m²]  0,0100 0,0800 0,0300 0,2500 0,4200                                                                                                                                                                                                                                   | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80                                                                     | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load  σ <sub>c</sub> [MN/m²]  Load  σ <sub>c</sub> [MN/m²]  0,0100  0,0800  0,1600  0,2500  0,3300                                                                                                                                                                                                | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25                                                                          | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Load σ <sub>o</sub> [MN/m²]  Load σ <sub>o</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,3300 0,4200 0,5000                                                                                                                                                                                        | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21                                                                | -9,0336<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733                                                                                         | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load  σ <sub>c</sub> [MN/m²]  Load  σ <sub>c</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,3300 0,4200 0,5000                                                                                                                                                                                      | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21 3,95                                                           | -9,0336<br>-7,5733                                                                                                                                                           | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain modu<br>Strain modu<br>Strain modu<br>Remarks:<br>Last-<br>stufe<br>First loading<br>1 2 3 4 4 5 6 6 7 Juloading<br>8 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Load σ <sub>c</sub> [MN/m²]  Load σ <sub>c</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,3300 0,4200 0,5000 0,1250                                                                                                                                                                                 | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21                                                                | 0,0<br>0,0<br>0,00<br>0,50<br>1,50<br>2,00                                                                                                                                   | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load σ <sub>s</sub> [MN/m²]  Load σ <sub>s</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,3300 0,4200 0,5000 0,2500 0,1250                                                                                                                                                                          | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21 3,95 3,70                                                      | -9,0336<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733                                                                                         | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load σ <sub>o</sub> [MN/m²]  Load σ <sub>o</sub> [MN/m²]  Ratio E <sub>vz</sub> /E <sub>v1</sub> Load σ <sub>o</sub> [MN/m²]  0,0100 0,0800 0,1500 0,2500 0,3300 0,4200 0,5000 0,1250 0,1250 0                                                                                                    | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21  3,95 3,70                                                     | -9,0336<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733                                             | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load σ <sub>c</sub> [MN/m²]  Load σ <sub>c</sub> [MN/m²]  Ratio E <sub>v2</sub> /E <sub>v1</sub> Coad σ <sub>c</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,3300 0,4200 0,5000 0,1250  Q 0,0000 0,0800                                                                                            | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21 3,95 3,70 2,59 3,22                                            | 0,0<br>0,0<br>0,00<br>0,50<br>1,50<br>2,00                                                                                                                                   | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load σ <sub>o</sub> [MN/m²]  Load σ <sub>o</sub> [MN/m²]  Ratio E <sub>vz</sub> /E <sub>v1</sub> Load σ <sub>o</sub> [MN/m²]  0,0100 0,0800 0,1500 0,2500 0,3300 0,4200 0,5000 0,1250 0,1250 0                                                                                                    | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21  3,95 3,70                                                     | 0,0<br>0,0<br>0,00<br>0,50<br>1,50<br>2,00<br>2,50<br>3,00                                                                                                                   | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode Strain | Load σ <sub>c</sub> [MN/m²]  Load σ <sub>c</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,1250 0 0,0800 0,1250 0 0,0800 0,1600 0,0800                                                                                                                                                               | Deflection<br>s [mm]<br>0,00<br>1,15<br>2,09<br>2,87<br>3,25<br>3,80<br>4,21<br>3,95<br>3,70<br>2,59<br>3,22<br>3,53 | -9,0336<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733                                             | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode 1 2 3 4 5 6 7 Julioading 8 9 Second loadin 10 11 12 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Load σ <sub>o</sub> [MN/m²]  Load σ <sub>o</sub> [MN/m²]  Ratio E <sub>vz</sub> /E <sub>v1</sub> Load σ <sub>o</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,3300 0,4200 0,1500 0,1250 0,1250 0 0,0000 0,0000 0,1600 0,0000 0,1600 0,2500 0,1500 0,1500 0,1500 0,1500 0,1500                       | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21 3,95 3,70 2,59 3,22 3,53 3,78                                  | -9,0336<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733<br>-7,5733 | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |
| Strain mode 1 2 3 4 5 6 7 Jinloading 8 9 9 Second loadin 10 11 12 13 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load σ <sub>o</sub> [MN/m²]  Load σ <sub>o</sub> [MN/m²]  Ratio E <sub>vz</sub> /E <sub>v1</sub> Ratio E <sub>vz</sub> /E <sub>v1</sub> Load σ <sub>o</sub> [MN/m²]  0,0100 0,0800 0,1600 0,2500 0,1250  G 0,0000 0,0800 0,1600 0,2500 0,1600 0,2500 0,1250  G 0,0000 0,0800 0,1600 0,2500 0,1600 | Deflection s [mm]  0,00 1,15 2,09 2,87 3,25 3,80 4,21  3,95 3,70  2,59 3,22 3,53 3,78 3,98                           | 0,0<br>0,0<br>0,00<br>0,50<br>1,50<br>2,00<br>2,50<br>3,00                                                                                                                   | 0,5000<br>0,4200                     | 29,0<br>78,9<br>2,71      | ≥ 27 *) ≥ 45 ≤ 3,0 *) 60% of E <sub>√2</sub> | Ok.<br>Ok.<br>Ok. |

#### **Light Weight Deflectometer Application**

- Determine the stiffness of unbound materials (subgrade/subsoils and base layers, granular layers & backfilling materials) or partially bound material (e.g. stabilised) during construction or rehabilitation works
- Rapid layer by layer QC for Compaction on Road, Rail, Tunnels, Runways etc
- Creates link between the design specification (design modulus) and the actual site condition (in-situ modulus value).



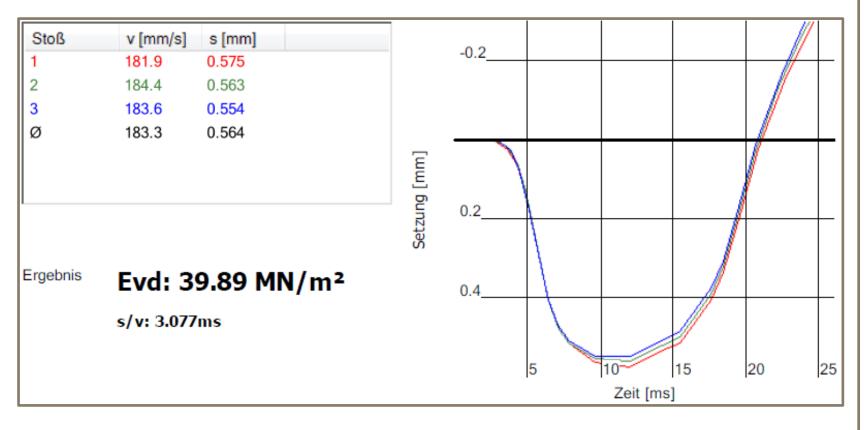
Accelerometer based

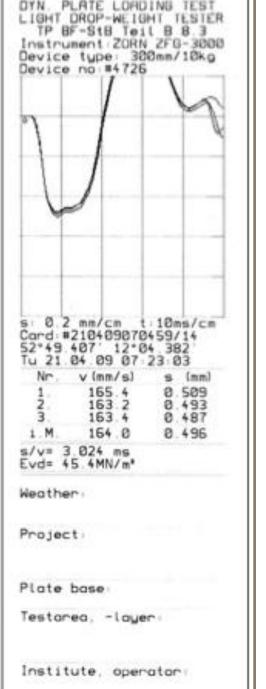
#### **Light Weight Deflectometer**





- It's repeatable, fast (test is done in 3 minutes) and gives you immediate, GPS located, time stamped results
- The LWD can be used for:
  - measuring deflection
  - determine dynamic modulus
  - assessing the degree of compaction
  - insitu and laboratory dynamic CBR


#### **Example Starter Application**


In-situ testing of earthworks during construction, where common techniques (e.g. nuclear gauge/sand replacement) are not appropriate or cost effective

- Fill with larger grain size
- Trenches
- Contaminated sites
- More remote locations



#### **Results and Analysis**





**NSITUTE** 

#### **Draft Technical Note June 2021**

Guidance on Use of Light Weight Falling Deflectometers (LWDs) to be Accepted as an Alternative Method for Verification of Earthworks Compaction Requirements



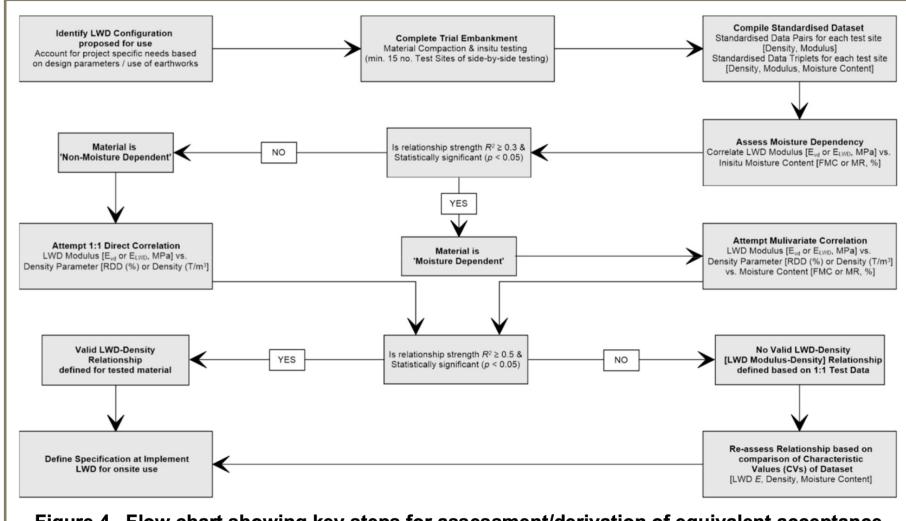



Figure 4 Flow chart showing key steps for assessment/derivation of equivalent acceptance thresholds for LWD use (in lieu of traditional (density) testing minimum thresholds included in MRTS04 – General Earthworks)

### Intelligent Compaction (IC) / Continuous Compaction Control (CCC)

**Create Uniform Efficient Quantified Compaction** 

An Integrated Compaction Control System

Increase construction productivity, lower cost, improve quality, reduce risk and reduce your environmental footprint

#### **Compaction Approach - Traditional vs Modern**

| Design basis        |                                            | Compaction control                                                                       |                                            |                                                                        |  |
|---------------------|--------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|--|
|                     | Compaction method                          | Measurement training                                                                     | In-situ test methods                       | Coverage                                                               |  |
| Modulus / stiffness | Traditional method  Operator feel & memory | Density / CBR  After compaction is complete  Provides little or no "on the fly" feedback | Nuclear gauge                              | Traditional Compaction Testing Method  1/1,000,000                     |  |
| Modulus / stiffness | Modern method Intelligent compaction       | Stiffness / modulus Ongoing measure & feedback to operator                               | Modulus based (incl. Plate load test & LWD | Compaction Testing and Coverage Mapping with AccuGrade  100 % Coverage |  |

#### **Intelligent Compaction - Soils**

VOLKEL

Onboard Reporting

Continuous Measurement

Engage. Envision. Excel.

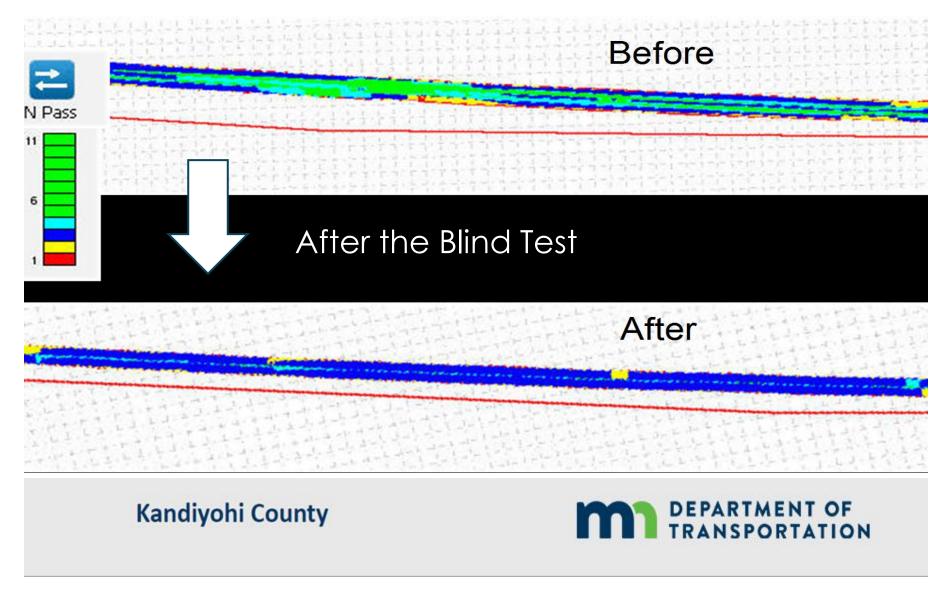
Near real time

Remote

Monitoring

#### **Intelligent Compaction Völkel Kit For Soils**

#### The Terminology Explained


Base installation kit = Intelligent node, quick change display mount, accelerometer sensors and associated wiring

Navigation Kit = Navigator Display and GNSS receiver with modem

Retrofit regardless of manufacturer – suitable for use on most roller types



# **Improved Rolling Pattern – Blind Test**



# **Quick Win – Pass Count Measurement Over Rolling, Under Rolling and Gaps**

- Eliminate over rolling
  - Commonly leads to ~30% increase in productivity
  - Eliminating increased material usage due to over compaction importing additional material can be a major unanticipated project cost
- Eliminates under rolling & gaps between passes
- Delivers compaction uniformity
- Time savings (operator & roller hours)
- Less fuel burn
- Lower roller maintenance costs

## **Pass Count & Coverage Visualisation & Tracking**

### Precision

Always know actual pass count pass by pass, layer by layer, everywhere on site

### Control



Remove manual pass counting pressure and/or mistakes Synchronisation - All plant operators have the same pass count view Data isn't lost on shift handover Chainage integration

### Uniformity



Ensure uniform compaction Roller speed recording





### Compliance

Show pass count vs target
Separate map and target each for

- Static pass count
- Dynamic pass count
- Vibration

Clear picture day or night

### Efficiency



Commonly leads to ~30% increase in productivity

### Skill Development



Accelerates operator proficiency by providing visual feedback



## **Operator Perspective – Better Visibility**

### Improved Context

Chainage / DXF linework adds more context for operator

### Synchronisation

Always be aware of total pass count across the roller fleet everywhere on site

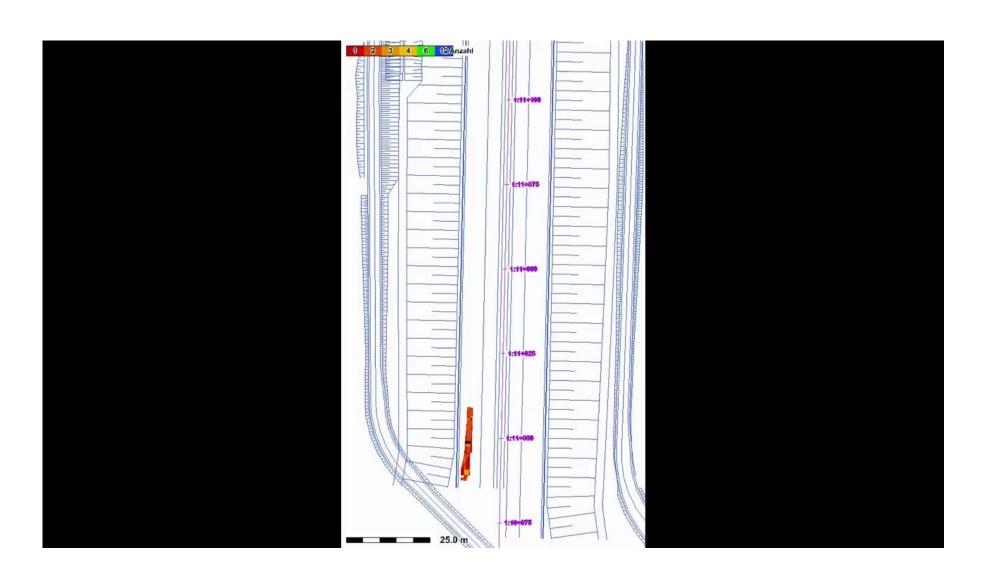


### Connectivity

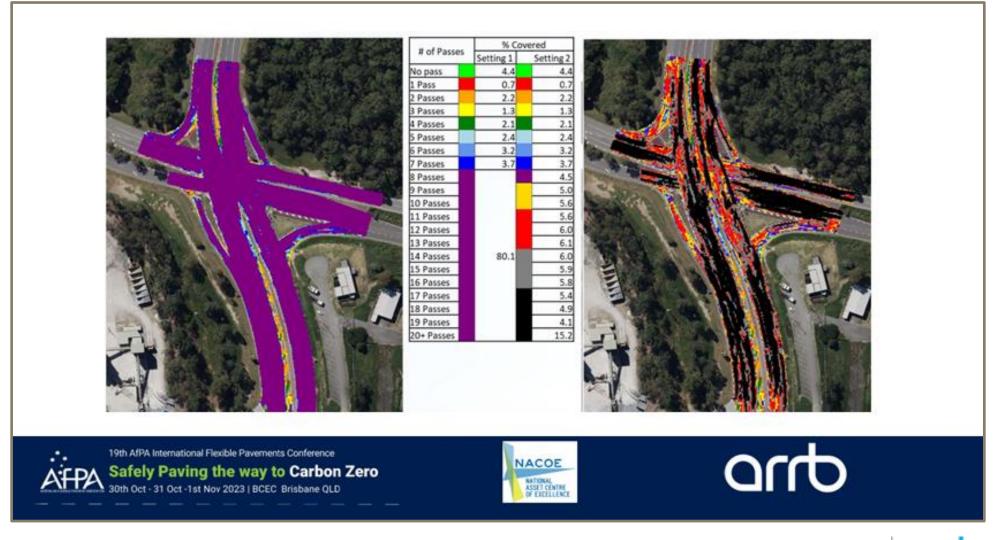
A new operator can see what has already been done

Data isn't lost on shift handover

### **Real Time**

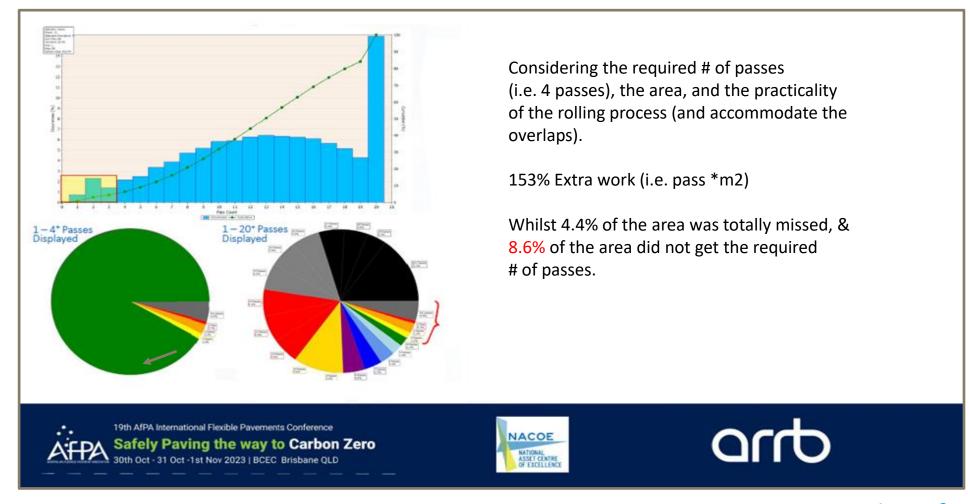

Data recorded and transmitted wirelessly to the office for improved QA

### Safety


With the roller operator being guided by their screen, they are free to focus on their broader context

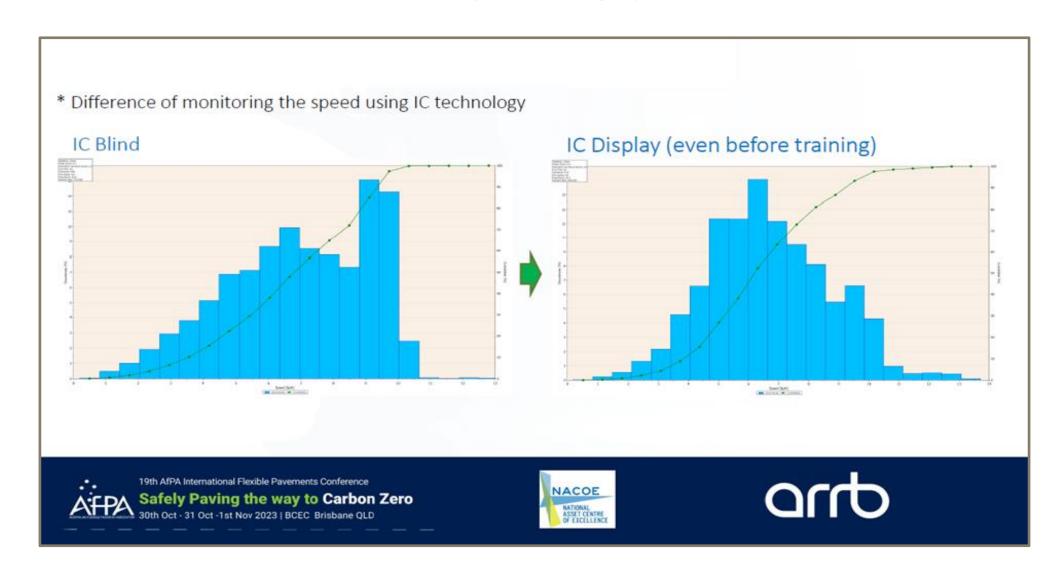


# **Operator Perspective – Office Validation & Reporting**




# **Preventing Excessive Work and Over Compaction – Example**



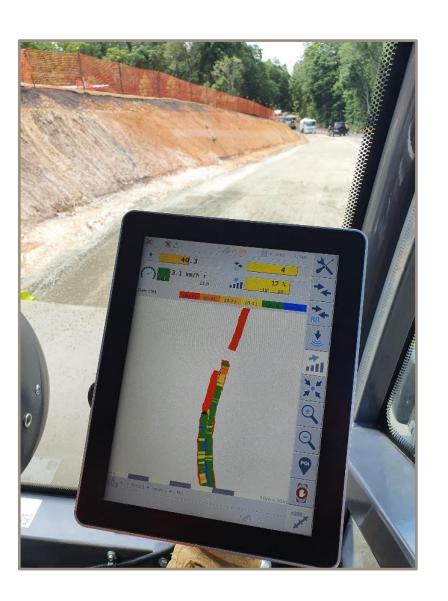



# **Preventing Excessive Work and Over Compaction – Example 2**





# **Monitoring Rollering Speed**




## **Pavement Response Stiffness Indication**


- Detect Soft Spots and Anomalies
- Provide 100% coverage overcoming the issues with a limited number of spot tests for Quality Assurance purposes
- Enabling continuous placement of material with confidence (without waiting for traditional test results)
- Using Völkel Navigator IC system in combination with PANDA Variable Energy DCP and Light Weight Deflectometer, potential to increase placed loose layer lift thicknesses

# **Pavement Response Accelerometer**

- Pavement response
  - Smart proof rolling
  - Stiffness indication
  - Stiffness Gain
- Vibration (amplitude & frequency and on / off)
- Oscillation (frequency and on / off)
- Unitless ICMV or MN/m2



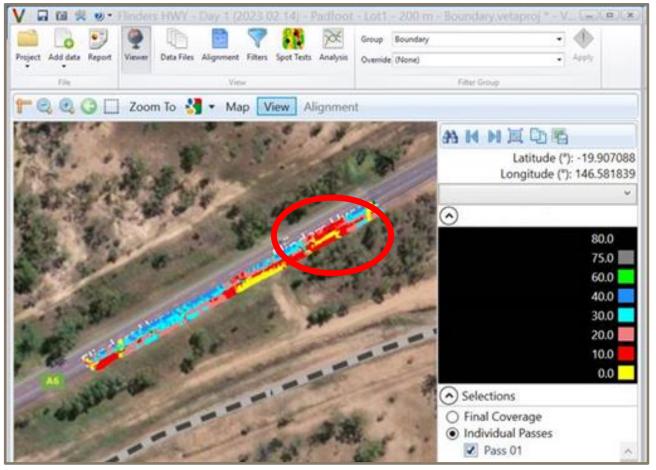
# **Measure & Display Soil Stiffness**





### **Uniform Compaction**

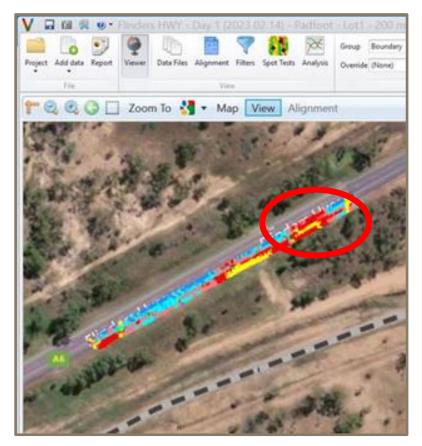
Simple operator display clearly shows material stiffness vs target (dynamic) ensuring compliance to rolling patterns day or night




### **Identify Outliers**

Measures everywhere you roll highlighting soft spots for more informed decision making by the geotechnical team




## **Detecting Soft Spots**







## **Detecting Soft Spots**







## **Measure & Display Soil Stiffness Indication**



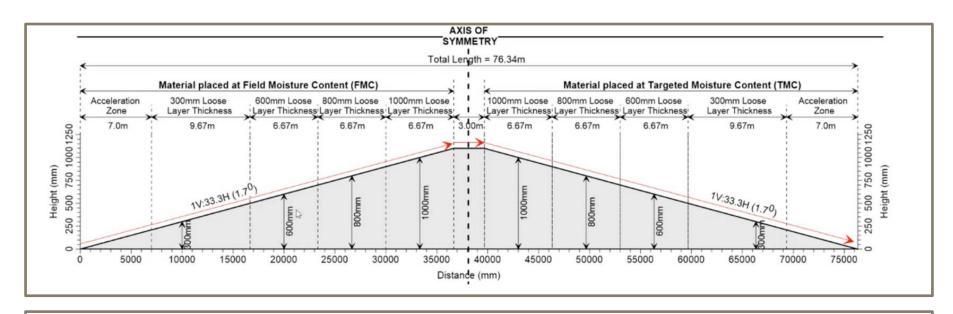
### Continued monitoring

Always be aware of material stiffness pass by pass, layer by layer, everywhere on site

### Access Soil Stiffness

Accelerometer mounted on drum measures stiffness confirming material compaction

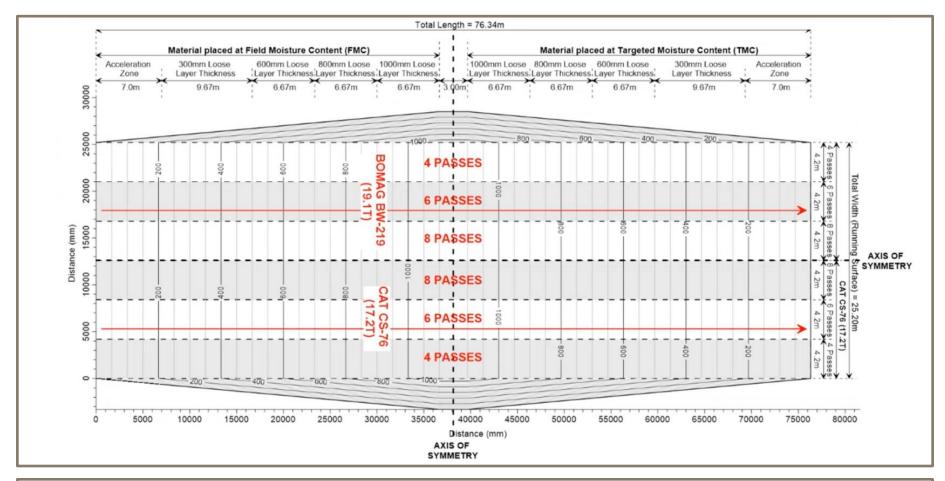
### Measure Stiffness Gain


Pass to pass change or Gain is recorded showing a gradual plateau of stiffness

# How to DOUBLE the Placed Loose Lift Thickness

(and halve the number of lifts) without compromising quality

**Australian Case Study** 


### **Full Scale Trial Embankments**



- Approx. 75m Length x 25m Wide Trial Embankments
  - 3 Embankments
  - 3 Material Types being evaluated
- 4 Fill Thickness evaluated (all installed as loose layer thickness)
- 2 Moisture Contents considered Field moisture Content and Moisture Conditioned



### **Full Scale Trial Embankments**

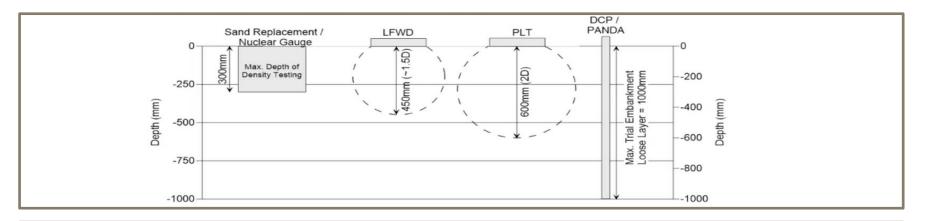


- 2 Roller Models and Types Padfoot and Smooth Drum
- 3 Frequencies of Roller Passes (4 Passes, 6 Passes, 8 Passes)

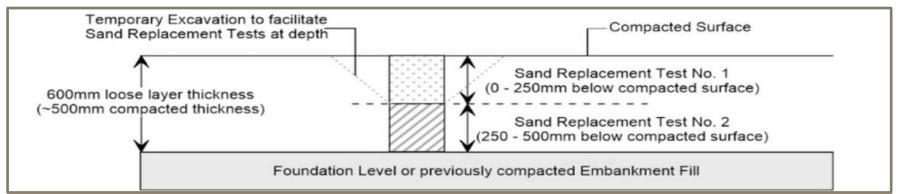
## **Deep Lift Specification**

- Approved use of 600mm loose layer thickness (100% improvement on current earthworks specification)
  - Limit adopted as this was minimum uniform improvement observed. Specific configurations (material, roller, moisture condition) demonstrated even higher acceptable loose layer thickness
- Specification included a method specification stated minimum roller type and compaction methodology (no. of passes)
- Key part of QA Regime included an Equivalence
   Table Each alternative test method had a
   minimum threshold to be achieved for acceptance
   (and details of key test arrangements)

Table 14 Alternative field testing and equivalent results that correlate with 95% Compaction threshold


| Test Name                                                                                  | Test Result equivalent to Sand<br>Replacement determined Dry<br>Density Ratio of 95% | Test Depth /<br>Zone of<br>Influence | Notes / Comments                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclear Density Gauge                                                                      | Dry Density Ratio = 95%                                                              | 250mm                                | Correlation needs to be confirmed for surface<br>based Nuclear Density Gauge and Sand<br>Replacement Tests                                                                                   |
| PANDA Probe                                                                                | q <sub>s</sub> = 10.0 MPa                                                            | Depth of<br>Penetration              | q <sub>e</sub> = Cone Tip Resistance<br>(suitably filtered to remove effect that presence<br>of oversize may have on q <sub>e</sub> parameter)<br>Cone Tip Area = 2 cm²                      |
| Static Plate Load Test<br>(PLT)<br>or Equivalent<br>(e.g. Falling weight<br>Deflectometer) | E <sub>12</sub> = 60 MPa                                                             | ~ 600mm                              | Ev2 is determined by second loading cycle (i.e. 1st reloading cycle)  All PLT testing to be completed using 300mm diameter plate                                                             |
| Light Falling Weight<br>Deflectometer (LFWD)                                               | Ециономи = 45 МРа                                                                    | ~450mm                               | ELPNO-100F2 = insitu modulus determined under 100kPa applied test stress  All LFWD testing to be completed using 300mm diameter plate  Prima 100 model LFWD shall be utilised for LFWD tests |

**Material Specific** 




## **Deep Lift Specification**

• Stakeholders was very keen to be able to prove full depth compaction had been achieved, as that was key part (limitation) of the existing QA



• Specification also included a provision for compliance with density QA regime, especially in first stages of specification in production





## **Key Findings Deep Lift - Compaction & Testing**

- Early collaboration between designers, contractor and client and their technical advisers really important
  - Utilise early contractor involvement
- Don't just put into the tender / specification documentation or worse, introduce part way through the project when participants have won the work based on a different compaction and testing regime
- Importance of using consultants with a track record implementing this approach builds confidence





# **ROBIN POWER**

**Chief Executive** 



robin.power@insitutek.com



www.insitutek.com



+61 404 114 751