Transforming the productivity of sandy landscapes in southern and western Australia.

Therese McBeath, CSIRO and Stephen Davies, DPIRD

Sandy Soils of Agricultural Zones in Australia

Southern

Where did we start?

Conservation Agriculture has been underpinning Australian grain production for decades...

- By 2010, 90% of Australian growers had adopted no-till practices.
- In real terms wheat yields were not increasing following the millenium drought....
- The conservation agriculture system was facing a series of challenges....

Where did we start?

Crops grown in sandy soils were underperforming relative to potential. This was evidenced by:

- Water left behind at harvest.
- A gap between actual and potential yield ~55%.

Increasing water supply up to 350mm

Southern project sites 2016-2022, Porker et al. 2025.

Sandy Soil – Constraints to Crop Production

Repellence

- Coating of low surface area sand particles with waxy, organic materials.
- Often derived from crop residues.
- Poor infiltration and crop establishment.

Acidity

- Low buffering soils.
- Vulnerable to loss of bases as crop production increases.
- Increased use of N fertiliser increases acidification rate.
- Poor growth of susceptible crops/ varieties.

Fertility

- Low organic matter soils, with low inherent fertility.
- Low cation exchange and buffering capacity.
- Often have bleached layers and a history of nutrient removal > inputs.
- Poor growth and water use.

Sandy Soil Constraints to Crop Production

Soil Strength

- Traffic induced compaction
- Natural hardening on drying
- Cementing
- Reduced root growth (depth and volume)

Water Holding Capacity

- Low capacity to store moisture.
- Water vulnerable to rapid infiltration and movement.
- Can be a benefit (less rain to wet up to available water content)!

Therese.Mcbeath@csiro.au Stephen.Davies@dpird.wa.gov.au

Strategic Deep Tillage Options

Strategic Tillage Benefits

Overcoming soil Constraints

- 1. Burial/dilution of water repellent topsoil
- 2. Incorporation of:
 - i. Lime
 - ii. Organic matter
 - iii. Biology
 - iv. Nutrients
 - v. Clay
- 3. Soil loosening to working depth of implement

Other Benefits

- 1. Root growth
- 2. Weed seed burial
- 3. Increased activity of soil applied herbicides
- 4. Increased biological activity to incorporation depth
- 5. Reduced Rhizoctonia solani AG8 damage
- 6. Reduced frost damage

Strategic Tillage Risks

Crop Establishment Risks

- 1. Seeding depth/placement
- 2. Furrow infill wind erosion
- 3. Herbicide damage
- 4. Soil crusting
- 5. Rapid soil drying

Other Risks

- 1. Trafficability
- 2. Soil erosion
- 3. Low topsoil OM
- 4. Soil Closs
- 5. Re-compaction
- 6. Haying off

Strategic Tillage Responses

On average, 36% of yield gap closed. In some cases, gap is closed and potential exceeded Southern project sites 2016-2022, Porker et al. 2025.

Strategic Tillage – Topsoil Water Repellence

Strategic Tillage – Soil Strength

Strategic Tillage – Soil Acidity

Strategic Tillage Adoption

Strategic Tillage Adoption

Strategic Tillage Economics

Conclusions

- Sandy soils of Australia have multiple constraints to crop production.
- Strategic deep tillage ameliorates the constraints when the tillage technique is matched to the constraint.
- Adoption of strategic deep tillage has been rapid, but risks need to be managed to fully realise the benefits.
- Strategic tillage an important tool for sustaining our conservation agriculture systems.

Acknowledgements

Thanks to:

- Our collaborating researchers in the project teams
- GRDC Projects
 - SOUTH: CSP2403-017RTX, CSP002003
 - WEST: DAW2407-001SPX, DAW1901-006RTX, DAW1902-003RTX, DAW1801-001RTX
- Our Collaborating Landholders and wonderful technical teams.

Trengove Consulting

