

Adjustment in the Recommendation for Lime Requirements in Sandy Soils in the Brazilian Cerrado – 1st Approximation

Flávia Cristina dos Santos Soil Fertility Researcher

Embrapa Maize and Sorghum

Collaborators: Henrique Souza
João Herbert
Manoel Ricardo
Reinaldo Cantarutti
Daniela Facco
Rodrigo Knevitz

MINISTRY OF AGRICULTURE AND LIVESTOCK

Importance of Adjusting Liming Recommendations for Sandy Soils in Brazil and the Matopiba Region (Entisols/Quartzipsamments)

Matopiba: a new agricultural frontier in the country, with great potential for agribusiness development and approximately 73 million of hectares, 20% of which consists of sandy soils.

Greenhouse experiment – no plants

Treatments:

- 4 rates of limestone 0, 1, 2, and 4 x recommended lime rate RLR
- 2 irrigation type: daily and monthly 3 additional treatments (3 rates of filler limestone under monthly irrigation)

Evaluations: soil sampling at 1, 2, 3, 6, and 12 months after limestone application

Greenhouse experiment – with plants (grass, sorghum, and soybean)

Treatments: 4 rates of limestone
0, 1, 2, and 4 x recommended lime rate – RLR

Evaluations: soil sampling at 1, 2, 3, 6, and 12 months after limestone application

4 RLR (4 tons ha⁻¹) maximum pH (7.0) maximum Ca + Mg (3.8)

Field experiment – Xanxere Farm (Bahia State)

ISSN 1807-1929

Revista Brasileira de Engenharia Agrícola e Ambiental

Brazilian Journal of Agricultural and Environmental Engineering v.27, n.10, p.820-827, 2023

Campina Grande, PB - http://www.agriambi.com.br - http://www.scielo.br/rbeaa

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v27n10p820-827

Nonlinear modeling of liming reaction and extractable base curves1

Ajuste não linear de curvas de reação de calcário e bases trocáveis

Treatments: 4 rates of limestone 0, 5, 10, and 20 tons ha⁻¹

Evaluations: soil sampling at 1 and 2.5 years after liming

20 tons ha⁻¹ maximum pH (7.2) maximum Ca + Mg (3.9)

Field experiment – Trijunção Farm (Bahia State)

Agrosystem: Grass, sorghum, and soybean

Treatments: 4 rates of limestone

0, 2.5, 5, and 10 tons ha⁻¹

10 tons ha⁻¹ maximum pH (7.5) maximum Ca + Mg (3.6)

Evaluations: soil sampling at 2, 8, 15, 20, 26, and 32 months after liming

Field experiment - Mato Grosso State

Agrosystem: soybean, grass, sorghum, crotalaria

Treatments: 3 total rates of limestone

0, 4, and 8 tons ha⁻¹

Evaluations: soil sampling at 1, 4, and 6 years after first application

of liming

8 tons ha⁻¹ maximum pH (7.3) maximum Ca + Mg (7.3)

Adjustment in Lime Rate recommendation

- 112 sandy soil samples (140 g kg⁻¹ of clay) and soybean yield of field experiments from Bahia and Mato Grosso States (0-20 and 20-40 cm), 3 crop seasons
- Boundary line method to generate fertility classes and critical levels for soil chemical properties, using the concept of relative yield.

Souza et al., 2024 - https://doi.org/10.36783/18069657rbcs20230154

Fertility classes: 95% and 80% of the relative maximum yield (soil layer: 0-20 cm and 20-40 cm) – the 20-40 cm soil layer is critical in sandy soil, especially to open new areas and to recover degraded pasture

0 0-20 cm:

Table 1. Fertility classes and critical levels for sandy soils

0-20 cm	Very low	Low	Adequate	High	Very high	Critical level
pH(H ₂ O)	< 5.3	5.3-5.7	5.8-6.8	6.9-7.3	>7.3	6.3
Ca (cmol _c dm ⁻³)	< 0.7	0.7-1.8	1.9-4.0	4.1-5.1	>5.1	2.9
Mg (cmol _c dm ⁻³)	< 0.3	0.3-0.5	0.6-1.3	1.4-1.6	>1.6	0.9
SB (cmol _c dm ⁻³)	<2.6	2.6-3.3	3.4-4.2	4.3-5.0	>5	3.4
CTC (cmol _c dm ⁻³)	<4.3	4.3-5.7	5.8-8.7	8.8-10.1	>10.1	7.2
V (%)	<29	29-44	45-77	78-93	>93	61
P (mg dm ⁻³)	<6	6-20	21-50	51-64	>64	35
K (mg dm ⁻³)	<21	21-34	35-61	62-75	>75	48
MO (g kg ⁻¹)	<1	1-8	9-33	34-45	>45	21
H+AI (cmol _c dm ⁻³)	< 0.3	0.3-1.5	1.6-4.2	4.3-5.5	>5.5	2.9
20-40 cm						
Ca (cmol _c dm ⁻³)	< 0.1	0.2-0.4	0.5-1.4	1.5-1.9	>1.9	1.0
Mg (cmol _c dm ⁻³)	< 0.05	0.06-0.1	0.2-0.6	0.7-0.8	>0.8	0.4
V (%)	<9	10-22	23-52	53-66	>66	38

Liming Rate (LR) proposal for sandy soils

LR (t
$$ha^{-1}$$
) = [1] + [2]

[1] 0-20 cm:

LR (t ha⁻¹) = { $(1 \times Al \text{ cmol}_c \text{ dm}^{-3}) + [3.8 - (\text{soil Ca+Mg cmol}_c \text{ dm}^{-3})]} \times \text{soil bulk density}$

The value 3.8 comes from the concentrations obtained in the soil, Table 1 – sum of the Ca and Mg critical level in the 0–20 cm layer

[2] 20-40 cm:

NC = {(1 x Al cmol_c dm⁻³) + [1.4 - (soil Ca+ Mg cmol_c dm⁻³)]} x soil bulk density

The value 1.4 comes from the concentrations obtained in the soil, Table 1 – sum of the Ca and Mg critical level in the 20–40 cm layer

LR validation using the baseline soil data from Trijunção Farm, Bahia

Initial soil data (cmol _c dm ⁻³) Trijunção Farm		Proposal to increase Ca+Mg (cmol _c dm ⁻³)	Difference: critical level– initial	Soil bulk density (estimated)	LR (each soil layer)			
Soil layer	Са	Mg	AI	Sum:	Critical level			
(1) 0-20	0.9	0.4	0.0	1.3	3.8	2.5	1.7	4.3
(2) 20-40	0.4	0.2	0.0	0.6	1.4	0.8	1.5	1.2

LR (1+2), t ha ⁻¹ (calculated)	Guidelines recommendation	Maximum dose for physical efficiency, t ha ⁻¹ (observed)
<mark>5.5</mark>	0.7	<mark>5.6</mark>

Figure 1. Soybean yield as a function of lime rates

Conclusions

- pH and Al are not difficult to correct in sandy soils
- Most demand crops: ↑ Ca + Mg ↑ rates of limestone
- † rates of limestone: imply an improved fertility of the subsurface soil layer (20-40 cm)
- No problem with micronutrients, or easy to fix with foliar fertilization
- The 1st proposal to revise liming recommendations for sandy soils in Brazil reflects the need for a stronger scientific basis, as it is important to avoid applying excessively high rates

Acknowledgments

Researchers, field assistants, students

flavia.santos@embrapa.br

+55 31 99130-3522

