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Aims & Background
● This pilot study aims to utilise a novel machine learning (ML) 

platform, VariantSpark (VS)1, to investigate genetic variations 
contributing to Neisseria gonorrhoeae (NG) antimicrobial 
resistance (AMR). 

● NG is the second-most prevalent sexually-transmitted bacterial 
pathogen. It is listed as a WHO 'high-priority' resistance 
organism, due to its current high AMR distribution and historical 
ability to develop AMR2. 

● Applying ML to genomic data can improve identification of 
variants important for surveillance and diagnostics.

Methods
● Downloaded NG sequence and resistance data for 314 patients 

from a New Zealand publication3.
● Processed Illumina reads to generate variant call files (VCFs) 

with NZ_AP023069.1 as reference. 
● Input VCFs into VS for random forest analysis and Hail2.0 for 

Firth's logistic regression analysis as a comparison. 
● Utilised tetracycline AMR data because of its equal distribution 

of resistant and susceptible samples.
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                Figure 1. Pipeline for preparing data and executing VariantSpark random forest prediction. 
                Example numbers shown, splits count per node and variable weight not covered. 

Results & Discussion
● VS (Figure 2) provided high importance scores for known 

tetracycline allele variants4: rpsJ (tetracycline target) and porB 
(membrane pore). However, mtrCDE complex genes (5 genes 
for membrane efflux-pump) had low scores (<0.05).

● Interestingly, allele variants in two chaperone proteins (protein 
stabilisers), hscA and hemW, also had high importance scores. 
While these are not currently known to cause AMR, other 
chaperones have been linked to NG resistance5.

● Compared to logistic regression (Figure 3), VS had less 'noise', 
however both assigned high values to 'hypothetical' proteins.
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                Figure 2. VariantSpark random forest importance score assignments to allele variants. 
                Each dot signifies a unique allele variant. 
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                Figure 3. Hail2.0 logistic regression P-value assignments to allele variants.                                  
                Each dot signifies a unique allele variant.

In conclusion, machine learning  
successfully determined known and 
potential novel resistance genes.   

Future Directions
● Integrate multiple, public NG datasets for VS analysis. 

Importantly, combining large datasets offers varied resistance 
profiles, thus allowing prediction for other antimicrobials.

● Incorporate patient data (e.g., gender) into VS analysis to 
examine these as potential confounding factors.
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