Molecular testing for gonorrhoea resistance and its role in gonorrhoea control

Cameron Buckley

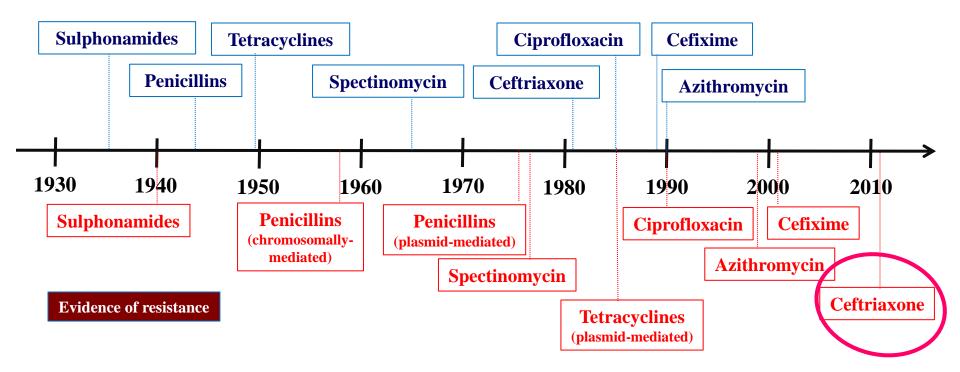
The University of Queensland, UQ Centre for Clinical Research

Disclosure:

Research funding from SpeeDx Pty Ltd, Australia.

HEALTH				2	013
	er' strain officials		drug-resistant gonorrhea concerns		
	an study showe antibiotic currer		xually transmitted disease is becoming increasingly resistant to the I to treat it.		
REUTERS	CDC	CW	/arns of Super-Gonorrhe	a	
	Like 5.1	1k 🈏 Tv	veet {453 2 +1 < 30 🛛 + 🔍 0 = Text 🛨 🚍		
	By ABC 1		ucker-Up: Super-Gonorrhea or Valentine's Day	Just in Ti	me
		Su	per-Bug on its Way to USA		
		Fet	oruary 14, 2013		
			New Gonorrhoea Strain 'Worse	e Than Aids	I
			Doctors in the US warn that a new drug-resistant strain of the sexually-transmi is "potentially disastrous".	tted disease	1:19pm UK, Monday 06 May 2013

_



Neisseria gonorrhoeae has developed resistance to multiple classes of antimicrobials:

Antibiotic first reported for treatment of gonorrhoea

WHO = 'High Priority' CDC = 'Urgent Threat' Neisseria gonorrhoeae has developed resistance to multiple classes of antimicrobials:

Ceftriaxone –

- Decreased-susceptibility (MICs 0.06-0.125mg/l):
 - Increasing numbers of gonococci with decreased-susceptibility to ceftriaxone observed worldwide over several years.
 - Have been associated with a few pharyngeal treatment failures, but not genital infections.
- Ceftriaxone-resistance (MICs >0.125mg/l):
 - H041 strain: Japan 2009 (Ohnishi et al. Emerg Infect Dis. 2011)
 - F89 strain: France 2010 & Spain 2011 (Unemo et al. AAC. 2012 & Cámara J et al. JAC2012)

* A8806 strain: Australia 2013 (Lahra, Ryder, Whiley. NEJM. 2014)

- *** 'Untreatable' A2543 strain:** UK 2018, Australia 2018 (2 cases)
 - Also exhibited high-level resistance to azithromycin!
- FC428 strain: Japan 2015, China 2016, Australia 2017, Canada 2017, Denmark 2017, France 2018, UK 2018, Ireland 2018, China 2019, France 2019, Australia 2019
 - Same ceftriaxone resistance mechanism as A2543 ➡ penA-60

sporadic

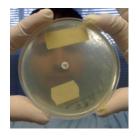
So what is being done to combat antibiotic-resistant gonorrhoea?

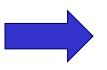
Key components of WHO and CDC action plans:

- advocacy for increased awareness on correct use of antibiotics.
- effective drug regulations and prescription policies
- effective prevention, diagnosis and control of gonococcal infections.
- research into alternative effective treatment regimens.
- strengthened AMR surveillance, including developing NAAT for detecting AMR
- developing procedures for systematic monitoring of treatment failures.

So what is being done to combat antibiotic-resistant gonorrhoea?

Key components of WHO and CDC action plans:


- advocacy for increased awareness on correct use of antibiotics.
- effective drug regulations and prescription policies
- effective prevention, diagnosis and control of gonococcal infections.
- research into alternative effective treatment regimens.
- strengthened AMR surveillance, including developing NAAT for detecting AMR
- developing procedures for systematic monitoring of treatment failures.



NHMRC-funded project. 2012 - 2015

<u>Phase 1:</u> To better understand the spread of NG and resistance.

Characterising isolates from throughout Australia.

<u>Phase 2:</u> Develop and apply molecular AMR methods (PCR) for direct testing of NG NAAT-positive clinical samples.

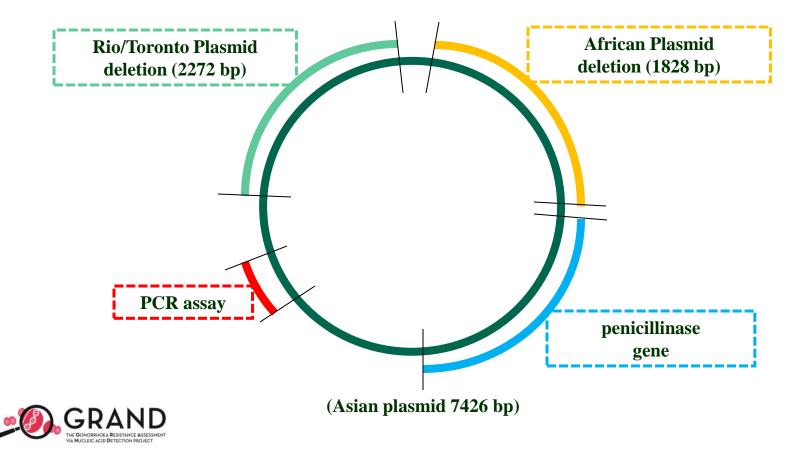
Key aims

- To enhance surveillance.
- To explore other treatment strategies.

PPNG-PCR:

- a PCR to detect penicillinase-producing *N.gonorrhoeae* (PPNG)
- targets gonococcal plasmid(s) carrying penicillinase gene.

(Goire et al. J Clin Microbiol. 2011 Feb;49(2):513-8.)



PPNG-PCR:

- a PCR to detect penicillinase-producing *N.gonorrhoeae* (PPNG)
- targets gonococcal plasmid(s) carrying penicillinase gene.

(Goire et al. J Clin Microbiol. 2011 Feb;49(2):513-8.)

PPNG-PCR:

- a PCR to detect penicillinase-producing *N.gonorrhoeae* (PPNG)
- targets gonococcal plasmid(s) carrying penicillinase gene.

(Goire et al. J Clin Microbiol. 2011 Feb;49(2):513-8.)

• Highly predictive of penicillin resistance (PPNG only, but misses CMRP)

Application:

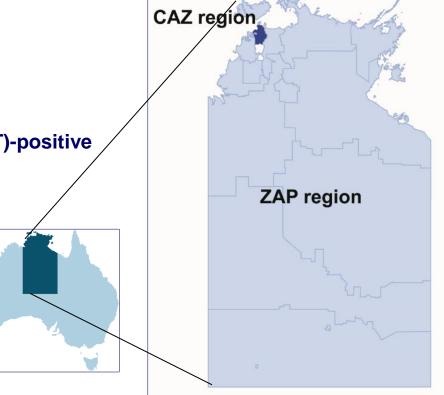
- Remote settings in Australia.
 - Penicillin still used for NG treatment in many remote communities.
 - PPNG-PCR provides <u>enhanced surveillance</u> for penicillin resistance only.

used to inform gonorrhoea management guidelines

(Speers et al. J Antimicrob Chemother. 2014 May;69(5):1243-7.)

Provides a model:

• A single PCR assay can be used to *enhance* bacterial culture-based surveillance.


Pilot study: The Northern Territory, Australia.

Two different first-line therapies are used for gonorrhoea treatment:

- Ceftriaxone + azithromycin (CAZ)
- Amoxicillin + azithromycin (ZAP)

Year 2014:

- GC bacterial culture; n = 222 isolates.
 Subjected to phenotypic AMR testing.
- GC nucleic-acid-amplification-test (NAAT)-positive samples; n = 1,629 samples.
 - Tested by the GC AMR PCR assays from GRAND.

Pilot study: The Northern Territory, Australia.

					-	
	CAZ region		ZAP regio	n	Total	
	(95% CI)		(95% CI)		(95% CI)	
	Culture	PCR	Culture	PCR	Culture	PCR
Azithromycin R	0.0%	0%	0.0%	0.2%	0.0%	0.2%
	(0.0–4.5)	(0–1.2)	(0.0–2.7)	(0.1–0.8)	(0.0–1.7)	(0.1–0.6)
Ceftriaxone DS	3.7%	2.3%	0.0%	0.0%	1.4%	0.6%
	(1.3–10.3)	(1.3–10.3)	(0.0–2.7)	(0.0–0.3)	(0.5–3.9)	(0.3–1.1)
Ciprofloxacin R	30.9%	20.9%	2.1%	1.0%	12.6%	5.8%
	(21.9–41.6)	(16.6–25.9)	(0.7–6.1)	(0.5–1.8)	(8.9–17.6)	(4.6–7.2)
Penicillin R	25.9%	21.3%	2.1%	1.6%	10.8%	6.7%
	(17.6–36.4)	(17–26.4)	(0.7–6.1)	(0.9–2.6)	(7.4–15.6)	(5.3-8.3)
PPNG	18.5%	11.9%	2.1%	1.0%	8.1%	3.7%
	(11.6-28.3)	(8.6-16.2)	(0.7-6.1)	(0.5-1.9)	(5.2-12.5)	(2.7-4.9)

Whiley et al. EID2017

p<0.01

Pilot study: The Northern Territory, Australia.

CAZ region		ZAP regior	1	Total	
(95% CI)		(95% CI)		(95% CI)	
Culture	PCR	Culture	PCR	Culture	PCR
0.0%	0%	0.0%	0.2%	0.0%	0.2%
(0.0–4.5)	(0–1.2)	(0.0–2.7)	(0.1–0.8)	(0.0–1.7)	(0.1–0.6)
3.7%	2.3%	0.0%	0.0%	1.4%	0.6%
(1.3–10.3)	(1.3–10.3)	(0.0–2.7)	(0.0–0.3)	(0.5–3.9)	(0.3–1.1)
30.9%	20.9%	2.1%	1.0%	12.6%	5.8%
(21.9–41.6)	(16.6–25.9)	(0.7–6.1)	(0.5–1.8)	(8.9–17.6)	(4.6–7.2)
				10.00/	
25.9%	21.3%	2.1%	1.6%	10.8%	6.7%
(17.6–36.4)	(17–26.4)	(0.7–6.1)	(0.9–2.6)	(7.4–15.6)	(5.3–8.3)
1					
18.5%	11.9%	2.1%	1.0%	8.1%	3.7%
(11.6-28.3)	(8.6-16.2)	(0.7-6.1)	(0.5-1.9)	(5.2-12.5)	(2.7-4.9)
	(95% CI) Culture 0.0% (0.0–4.5) 3.7% (1.3–10.3) 30.9% (21.9–41.6) 25.9% (17.6–36.4) 18.5%	(95% CI) Culture PCR 0.0% 0% (0.0-4.5) (0-1.2) 3.7% 2.3% (1.3-10.3) (1.3-10.3) 30.9% 20.9% (21.9-41.6) 21.3% (17.6-36.4) (17-26.4) 18.5% 11.9%	(95% CI) $(95% CI)$ CulturePCRCulture $0.0%$ $0%$ $0.0%$ $(0.0-4.5)$ $(0-1.2)$ $(0.0-2.7)$ $3.7%$ $2.3%$ $0.0%$ $(1.3-10.3)$ $(1.3-10.3)$ $(0.0-2.7)$ $30.9%$ $20.9%$ $2.1%$ $(21.9-41.6)$ $(16.6-25.9)$ $(0.7-6.1)$ $25.9%$ $21.3%$ $2.1%$ $(17.6-36.4)$ $(17-26.4)$ $(0.7-6.1)$ $18.5%$ $11.9%$ $2.1%$	(95% CI) $(95% CI)$ CulturePCRCulturePCR $0.0%$ $0.0%$ $0.0%$ $0.2%$ $(0.0-4.5)$ $(0-1.2)$ $(0.0-2.7)$ $(0.1-0.8)$ $3.7%$ $2.3%$ $0.0%$ $0.0%$ $(1.3-10.3)$ $(1.3-10.3)$ $(0.0-2.7)$ $(0.0-0.3)$ $30.9%$ $20.9%$ $2.1%$ $1.0%$ $(21.9-41.6)$ $21.3%$ $(0.7-6.1)$ $1.6%$ $(17.6-36.4)$ $(17-26.4)$ $(0.7-6.1)$ $1.0%$ $18.5%$ $11.9%$ $2.1%$ $1.0%$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Whiley et al. EID2017

p<0.01

How can we exploit these markers for individualised therapy?

Investigating GyrA 91 in Australian NG isolates:

n = 3,274 isolates		Culture (cip	profloxacin)
		Susceptible	Resistant
	wildtype	2,173	13
GyrA 91	S91F	22	1,066

	sensitivity	specificity
Prediction of susceptibility (wildtype):	99.0%	99.4%
Prediction of resistance (S91F):	98.8%	98.0%

(Trembizki et al. Lancet Infect Dis. 2016 Sep;16(9):1005-6.)

Investigating GyrA 91 in Australian NG isolates:

n = 3,274 isolates		Culture (cip	profloxacin)
$\mathbf{n}=3,27$	4 Isolates	Susceptible Resistar	
C A 01	wildtype	2,173	13
GyrA 91	S91F	22	1,066

	sensitivity	specificity
Prediction of susceptibility (wildtype):	99.0%	99.4%
Prediction of resistance (S91F):	98.8%	98.0%

(Trembizki et al. Lancet Infect Dis. 2016 Sep;16(9):1005-6.)

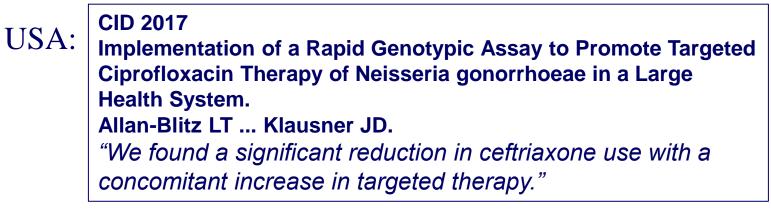
Sex Transm Dis. 2017 May;44(5):261-265. Allan-Blitz LT1, Wang X, Klausner JD.

A systematic review of 31 studies from 16 countries. The pooled estimate of sensitivity and specificity of gyrA genotype results for the prediction of N. gonorrhoeae susceptibility to ciprofloxacin were 98.2% and 98.6%, respectively.

How can we use this GyrA marker?

Beyond surveillanceindividualised treatment of gonorrhoea.

- Where a PCR test is used to detect ciprofloxacin susceptibility at the individual patient level.
 - Ciprofloxacin is highly effective as a single oral dose (against sensitive strains)
 - If treatment decision-making were based this GyrA marker then 98% of patients could correctly receive ciprofloxacin treatment.
 - ✤ Large proportions of cases remain ciprofloxacin-susceptible.


Eg. 70% of Australian gonorrhoea cases. AGSP 50% of cases in Europe Euro-GASP 2014

- <u>Potential benefits:</u>
 - Antibiotic stewardship spare use of ceftriaxone.
 - Expand <u>oral</u> treatment options for gonorrhoea.

Ciprofloxacin resistance & GyrA91

How can we use this GyrA marker?

Individualised treatment of gonorrhoea.

Australia:

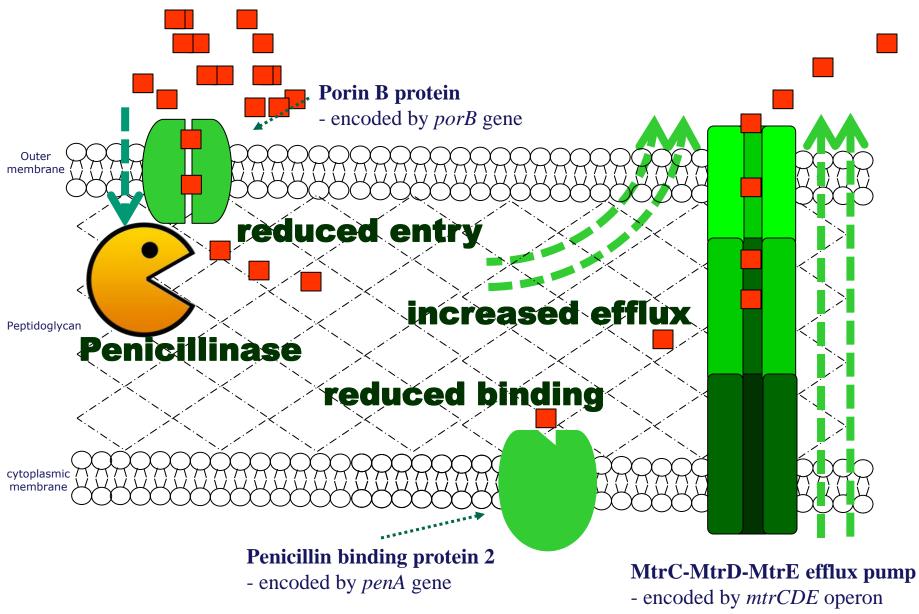
Study just commencing....

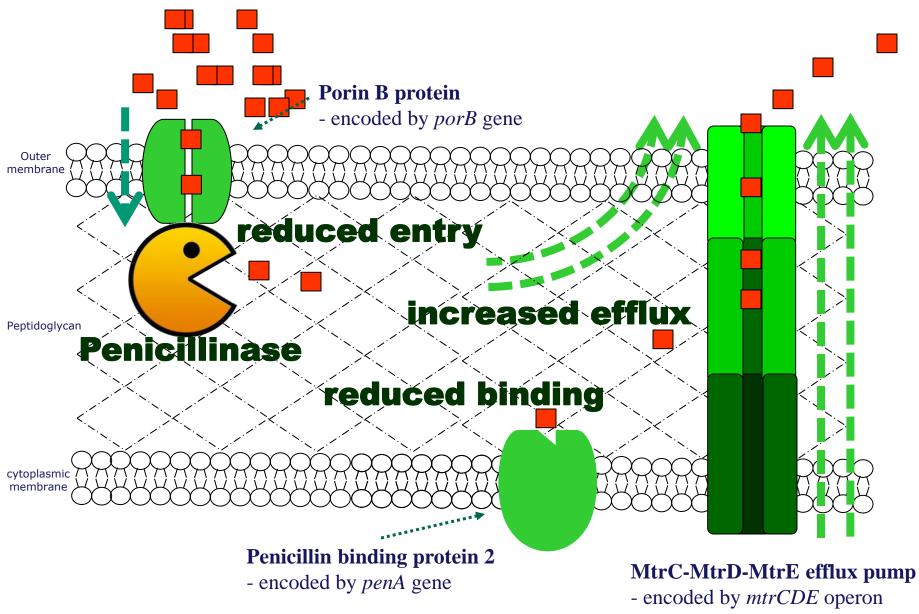
- Will involve 9 sex clinics and associated labs
- Partnered with SpeeDx Pty Ltd
- Primary objectives: (1) cure rate (2) acceptability.

ResistancePlus GC

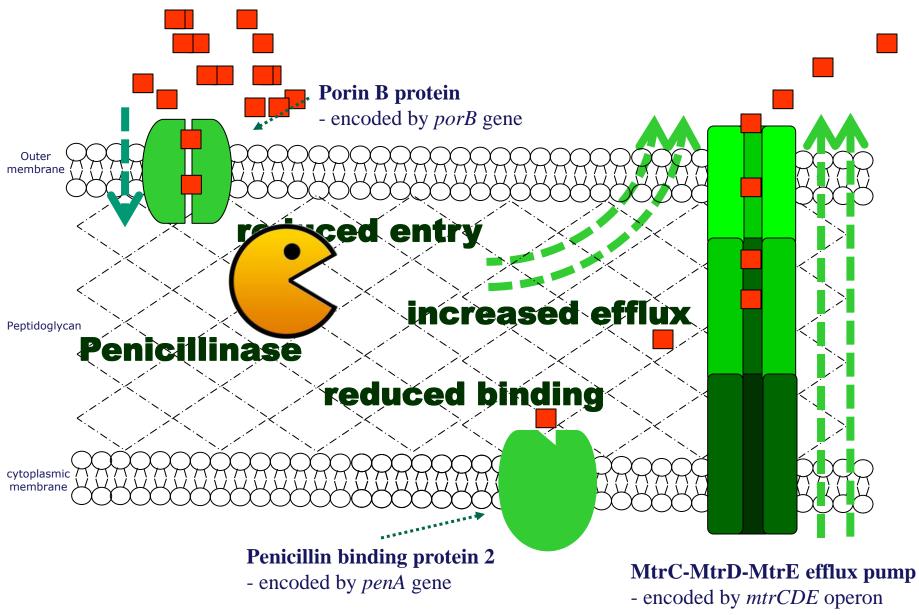
	Channel	Target
	1	N. gonorrhoeae (opa)
1	2	N. gonorrhoeae (porA)
Well	3	gyrA \$91\$ wild type
	4	gyrA S91F mutation
	5	Internal Control

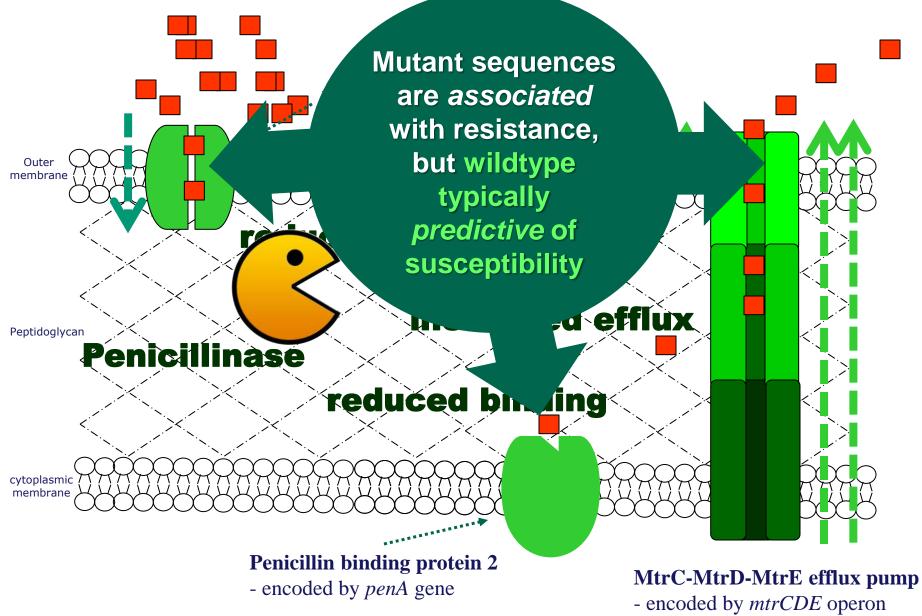
TGA Cleared (AUSTRALIA)


> CE IVD (EUROPE)


- Real-time PCR, single well assay, rapid qPCR results (<1.5 hours)
- Reflex test off GC positive result confirms GC with 2 targets, and additional the presence/absence of gyrA mutation
- Specimen Types urogenital and extra-genital specimens




Can we individualise therapy for other antibiotics? Eg. Beta-lactams?


Yes, but is a little more complicated...

Eg. Penicillin.

Investigating **wild-type porB and PPNG** in **Australian** NG isolates:

r = 2.274 isolatos	Culture (Penicillin)	
n = 3,274 isolates	Susceptible	Resistant
wild-type porB / non-PPNG	901	12
Other porB / PPNG / not determined	502	698

Prediction of susceptibility (wildtype): Prediction of resistance (Other):	sensitivity 64.2% 98.3%	specificity 98.7% 58.2%
Confident amoxicillin suit for these patients	able	

Eg. Penicillin.

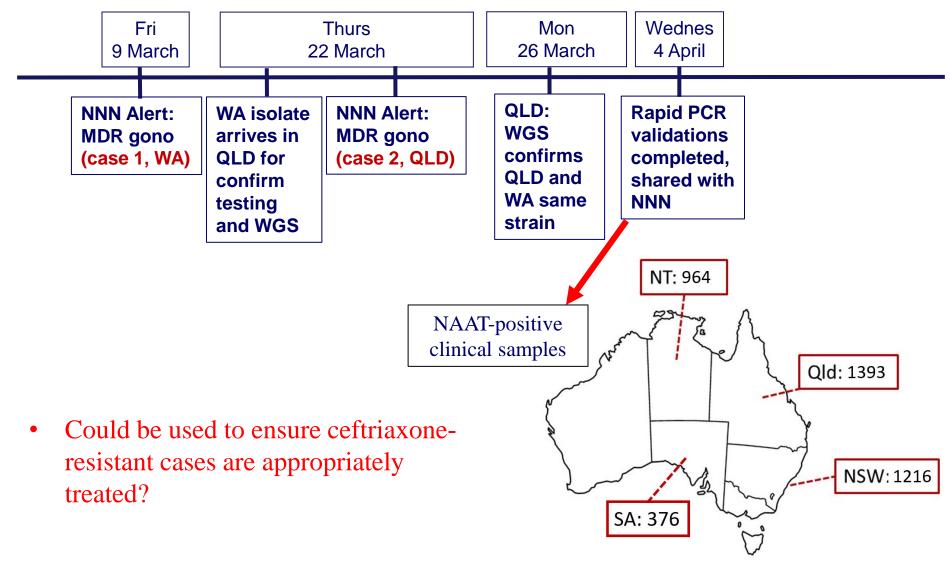
Investigating **wild-type porB and PPNG** in **Australian** NG isolates:

n = 2.274 isolatos	Culture (Penicillin)	
n = 3,274 isolates	Susceptible	Resistant
wild-type porB / non-PPNG	901	12
Other porB / PPNG / not determined	502	698

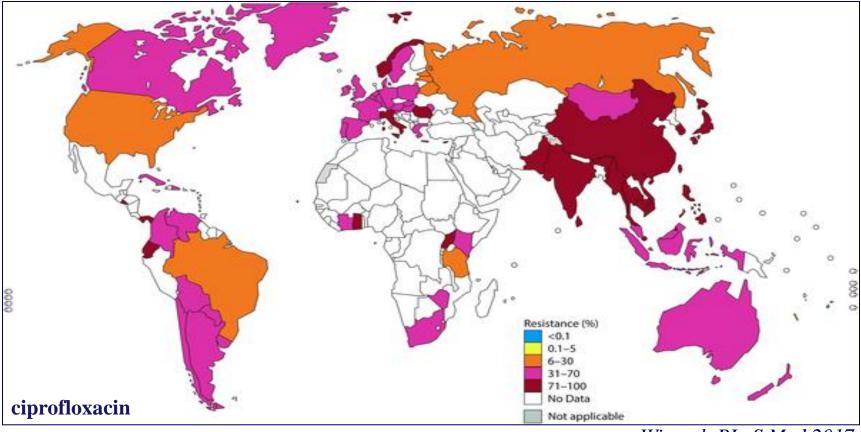
	sensitivity	specificity
Prediction of susceptibility (wildtype):	64.2%	98.7%
Prediction of resistance (Other):	98.3%	58.2%
Miss approx. 1/3 of susceptible infections	v et al. JAC2016)	

Eg. Penicillin.

THE GONORRHOEA RESISTANCE ASSESSMENT VIA NUCLEIC ACID DETECTION PROJECT


Investigating **wild-type porB and PPNG** in **Australian** NG isolates:

n = 3,274 isolates	Culture (Penicillin)	
	Susceptible	Resistant
wild-type porB / non-PPNG	901	12
Other porB / PPNG / not determined	502	698


	sensitivity	specificity
Prediction of susceptibility (wildtype):	64.2%	98.7%
Prediction of resistance (Other):	98.3%	58.2%
(Buckley of Not good at prediction resistance)	et al. JAC2016)	
GRAND		

Eg. Ceftriaxone resistance and the mosaic penA-60 (FC428 and A2543 strains)

National Neisseria Network response (2018):

Challenges for individualised treatment

Wi et al. PLoS Med 2017

Challenges for individualised treatment

- Discordant results different sites, same patient
 - Several cases involving multisite infection displayed either wild-type or mutant GyrA genotypes dependent on anatomical site. Pond *et al.* JAC. 2016; Allen-Blitz *et al.* Sex Transm Dis. 2019
- Predictive value of molecular markers need to be assessed in more settings

Conclusions

- Molecular tests for *N. gonorrhoeae* can be used to:
 - Enhance (not replace) culture-based NG AMR surveillance
 - Inform alternative treatment options
 - Rapidly assess prevalence of new markers (eg. penA-60)

Study investigators and collaborators, include:

UQCCR	A/Prof David Whiley	SAHMRI, SA	Dr James Ward
Prince of Wales Hospital, NSW	Dr Ella Trembizki	PathWest, WA	Dr David Speers
	Prof Monica Lahra		Julie Pearson
	Athena Limnios	Melbourne Sexual Health Centre	Prof Christopher Fairley
	Dr Tiffany Hogan		A/Prof Marcus Chen
	Rodney Enriquez	MDU, University of Melbourne	Prof Ben Howden
	Dr Ratan Kundu		Kerrie Stevens
	Dr Namraj Goire	Women's and Children's Hospital, SA	Andrew Lawrence
	Jasmin El-Nasser	Royal Darwin Hospital	Dr Robert Baird
Pathology Queensland	Prof Graeme Nimmo		Kevin Freeman
	Dr Cheryl Bletchly	Western Diagnostic Pathology, WA	Dr Miles Beaman
	Fleur Francis		Mahdad Karimi
Cairns Sexual Health Service	Dr Darren Russell	Forensic and Scientific Services, Qld	John Bates
Princess Alexandra Sexual Health	Dr Cheryn Palmer		Helen Smith
Townsville Sexual Health Services	Dr Arun Menon		Dr Amy Jennisen
Hunter New England Sexual Health	Dr Nathan Ryder		Vicki Hicks
Kirby Institute, UNSW	A/Prof Rebecca Guy	Westmead Clinical School	Prof David Lewis
	Prof John Kaldor	School of Public Health, UCLA	Prof Jeff Klausner
	Prof Basil Donovan	Sydney Sexual Health Centre	A/Prof Anna McNulty
Funding:	Dr Handan Wand	Royal Prince Alfred Sexual Health	A/Prof Catherine O'Connor
NHMRC &	Dr Damian Conway	St Vincent's Hospital, Sydney	Philip Cunningham
SpeeDx Pty Ltd	Dr Lise Lafferty	Royal Prince Alfred Hospital	A/Prof Sebastian van Hal
	Dr David Regan	CIDM Laboratory, Westmead Hospital	Ian Carter
	Dr Stephen Bell	Pathology North, Newcastle	Dr Rodney Givney
	Dr Marlene Kong	Clinic 34, NT	Dr Manoji Gunathilake
NATIONAL NEISBERIA NETWORK		Menzies, NT	Dr Jiunn-Yih Su