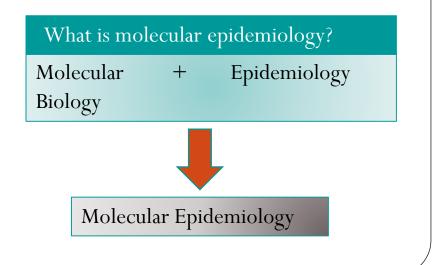

HIV Molecular Epidemiology

Dr Alison Castley



Principles of Molecular Epidemiology

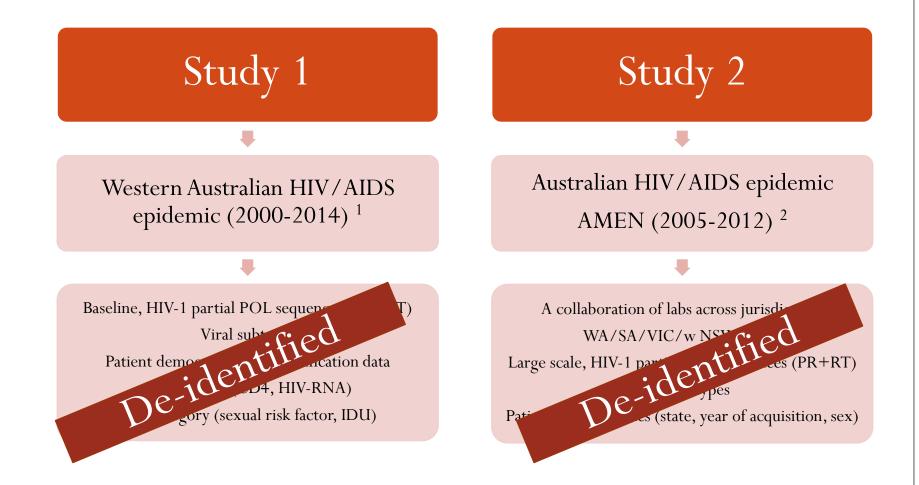
What Is Epidemiology? Peering Into This Public Health Topic

• The study of the determinants and distribution of health and disease related issues in a population.

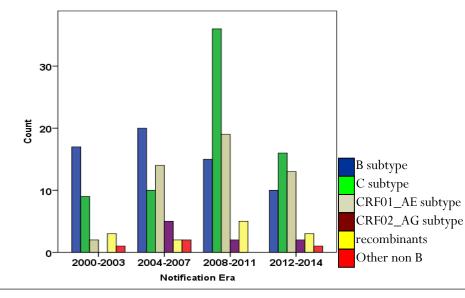
- Investigates genetic sequence variation in virus and other micro-organisms to learn about:
 - viral evolution (eg. SHIV -> HIV)
 - adaptation to human hosts (changes in virulence)
 - emergence of treatment resistance, and
 - distribution within a population

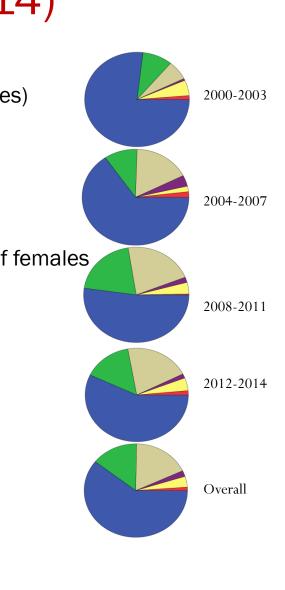
What is the usefulness of HIV epidemiological studies?

- Dynamically assesses new infections
- Monitoring geographical and subtype changes
- Transmission (routes)
- Pathogenesis (disease progression)
- Immune response and escape

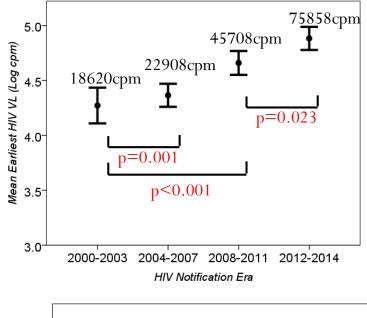

- DRMs and response to ART
- Diagnostic tools (ELISA, WB)
- Monitoring tools (HIV-RNA, SBT/NGS)
- VACCINE DEVELOPMENT
- Consider HIV within a global network

Global air travel network

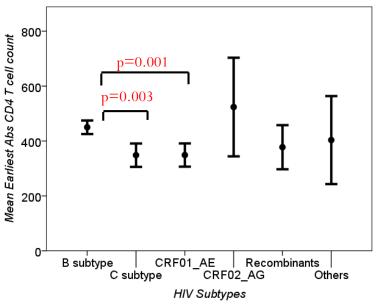

A number of world wide studies utilising HIV Molecular Epidemiological data.



1.Castley A et al AIDS RHR, 2015: Longitudinal trends in Western Australian, HIV-1 sequence diversity and viral transmission networks and their influence on clinical parameters: 2000 – 2014. 2.Castley A et al PlosOne 2017; A national study of the molecular epidemiology of HIV-1 in Australia 2005-2012.


Study 1: Western Australian HIV/AIDS epidemic (2000–2014)

- Baseline HIV-1 sequencing at diagnosis: 1021 individuals
- 20% female (average age 35 years females cf 45 years for males)
- Subtype diversity changed over time
- More viral diversity in females (↑ over time)
- Lower baseline viral load in B subtype
- Lower CD4 T cell counts in non-B subtypes (ie later diagnosis)
- More Australian-born males acquire non-B subtype HIV-1 O/S cf females
- More overseas born males and females acquire HIV overseas.

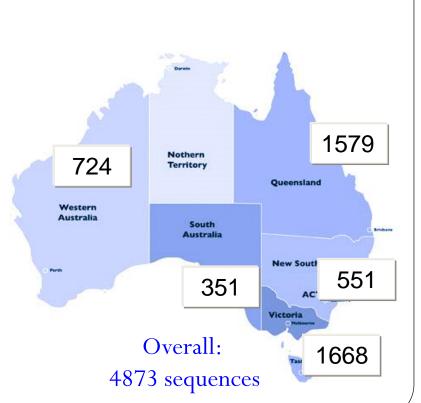


Earliest viral load and CD4 assessment

Strong influence of notification era (p<0.001).
 Higher viral load associated with HIV-1 sequences in large cluster (n=53, p=0.01; data not shown)
 No association between HIV-1 subtype and viral load (p=0.31).

Possible evidence of viral adaptation over time

➢ No significant association between notification era and CD4 T cell count (p=0.1) or CD4:CD8 ratio (p=0.2).


➢ HIV-1 subtypes C and AE associated with lower CD4 count (p<0.01): later diagnosis</p>

➢ Higher CD4 count associated with large cluster of highly similar HIV-1 sequences: earlier diagnosis Study 2: Australian HIV/AIDS Australian Molecular epidemic (2005-2012) Australian Molecular

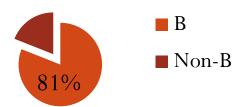
- New rates of HIV-1 on the increase in Australia
- Some jurisdictions had shown an increase in Non B subtypes
- No current Australian Epidemiological data
- AIM: to define HIV-1 subtype diversity patterns and to assess network patterns across Australia from 2005-2012.

Study 2: Background and Methods

- Australian Molecular Epidemiology Network (AMEN) formed December 2013
 - All states and territories represented (NT + Tas \rightarrow Vic)
 - Ethics and governance framework established
 - De-identified HIV-1 sequence results
 - Gender, age, state
 - Year of sequencing
 - HIV-1 sequences (RT + PR)
 - 2005 2012
 - 4 sequence eras (2005-06, 2007-08, 2009-10 and 2011-12)
 - Data analysis at one site
 - Sequence alignments checked
 - Duplicate sequences checked
 - Phylogenetic analysis
 - Complete dataset other than NSW

Australian Molecular Epidemiology Network

Study 2: HIV-1 subtypes and distribution

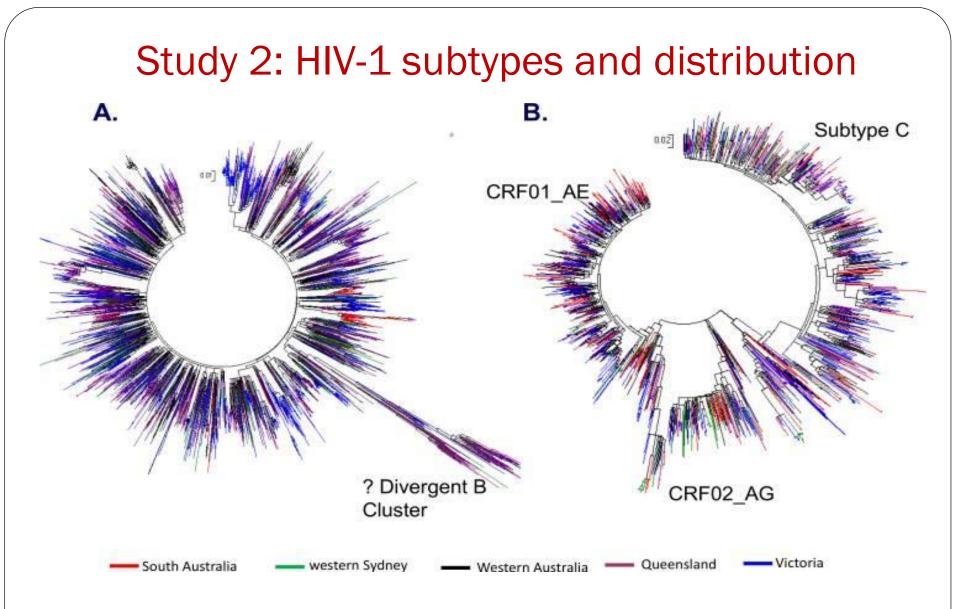

				· · · · · · · · · · · · · · · · · · ·							
State	Method	Year	Sequence (n)		SUBTYPE ID						Hospital/ Service
				B Subtype	CRF01_AE Subtype	C Subtype	CRF02_AG Subtype	D Subtype	Recombinant Forms	Other Subtypes	
WA	Stanford dB	2005- 2012	724	427	139	109	17	5	23	4	RPH-DCI
SA	Stanford dB	2005- 2012	351	240	38	35	20	1	9	8	SA Health
VIC	Los Alamos dB	2005- 2012	1668	1261	174	153	10	4	49	17	VIDRL
W- NSW	Stanford dB	2005- 2011	551	407	43	54	21	3	13	10	Westmead
QLD	Stanford dB	2007- 2012	1579	1296	90	124	20	8	34	7	QLD HIV Reference Lab
Total			4873	3631	484	475	88	21	128	46	
HIV-1 subtypes (4189 males) (648 females)											


B

Non-B

Castley A et al. PLoS One. 2017;12(5):e0170601.

33%



Study 2: HIV-1 subtypes and distribution

Castley A et al. PLoS One. 2017;12(5):e0170601.

Of 4873 sequences, 23% were within a pair or cluster(no difference between B and Non B subtypes) 286 pairs, 115x 3 to 5 sequences, 17 x 6-13 sequences and 1x large group of 29 sequences.

Castley A et al. PLoS One. 2017;12(5):e0170601.

Discussion (1)

- 1. Growing diversity in HIV-1 sequences in Australia over time, including HIV-1 subtypes historically linked to Africa and SE Asia
 - Likely to reflect increasing impact of travel and migration
 - Highlights value of regional engagement
 - Strong role in 'ending HIV' strategy in Australia
 - Similar patterns identified throughout Australia
 - Highlights value of national approach
 - Higher levels of HIV-1 subtype diversity among women living with HIV in Australia
 > Highlights diverse origins of HIV transmission for women living with HIV in Australia
 - High rates of circulating recombinant forms of HIV-1, indicating ongoing evolution of viral subtypes
 - Highlights need to evaluate local/national sequence diversity when developing/testing viral load and resistance testing assays
- 2. Investigated baseline (pre-treatment) HIV-1 sequence diversity only has not evaluated drug resistance at a national level

Discussion (2)

1. National collaboration of HIV-1 sequencing laboratories

- Forms a basis for monitoring drug resistance, with national coordination
 Particularly valuable in PrEP era will inform evolution of treatment strategies
- Data sharing to support evaluation and implementation of viral load and HIV-1 sequencing assays
 - ➤ Valuable both nationally and regionally
- Has provided a model for ethics/governance framework nationally, as well as highlighting challenges of current state-based approach
- 2. Future direction uncertain no existing funding to support national approach, or to engage regionally
 - Need to separate national collaborative strategy from discussion of HIV criminalisation
 HIV-1 sequencing from routine laboratory <u>cannot</u> legally infer transmission (although can exclude that possibility)
 - Requires dedicated and sustainable support, underpinned by existing collaborative goodwill

Acknowledgements

Departments of Clinical Immunology at RPH and FSH

David Nolan

Mina John

George Guelfi

Laila Gizzarelli

Silvana Gaudieri

Ian James

Lab Staff

Australian Molecular

David Nolan Shailendra Sawleshwarkar **Rick Varma** Karen Hawke Doris Chibo Anthony Kelleher Nam Nguyen Belinda Herring Kiran Thapa Rodney Ratcliff Roger Garcia Dominic Dwyer Angie Pinto

