



# Cognitive effects of escalating doses of oral lisdexamfetamine in methamphetamine dependent adults



#### Raimondo Bruno<sup>1,2</sup>, Nadine Ezard<sup>3,2</sup>, Adrian J. Dunlop<sup>4,5</sup>, Brendan Clifford<sup>3,5</sup>, Andrew Carr<sup>3,2</sup>, & Nicholas Lintzeris<sup>6,7</sup>

<sup>1</sup>University of Tasmania, Hobart, Australia, <sup>2</sup>UNSW Australia, Sydney, Australia, <sup>3</sup>St. Vincent's Hospital, Sydney, Australia, <sup>4</sup>Hunter New England Drug and Alcohol Services, Newcastle, Australia, <sup>5</sup>University of Newcastle, Newcastle, Australia, <sup>6</sup>The University of Sydney, Sydney, Australia, <sup>7</sup>South Eastern Sydney Local Health District, Sydney, Australia

## Why should we care about cognition in MA use disorder?

- Moderate magnitude impairment associated with MA-use disorder\*
- Primary treatment for MA dependence: CBT based (d=0.53)
- CBT effectiveness varies with cognitive function
  - Esp. attention, memory, exec
- Cognition important relation to outcomes
  - Relapse (inhibitory control)
  - Functional outcome (memory/exec)



Scott et al, 2007: meta analysis of cognition in persons with methamphetamine use disorders



NH<sub>2</sub>

#### Cognition within the Lisdex Study



Dose-escalating, phase-2 study of oral lisdexamfetamine in adults with methamphetamine dependence

A/Prof Nadine Ezard, St Vincent's Hospital/UNSW

Prof Adrian Dunlop, Hunter New England Local Health District/ University of Newcastle

Prof Andrew Carr, St Vincent's Hospital/UNSW

A/Prof, Raimondo Bruno, University of Tasmania

Brendan Clifford, St Vincent's Hospital / University of Sydney

Prof Nicholas Lintzeris, South East Sydney Local Health District/ University of Sydney

#### Trial registration:

ACTRN12615000391572 Funding: Hunter New England Local Health District; St Vincent's Health Network, Sydney; Curran Foundation, Sydney

Lisdexamfetamine:

- Dexamphetamine prodrug
- Kinetics superior:
  - slow onset, lower peak, longer duration

BMC Psychiatry 2016

## Effects of prescription stimulants in 'healthy adults': meta-analyses

| Domain                    | ES (d/g) | 95%CI        |
|---------------------------|----------|--------------|
| Processing speed accuracy | 0.28*    | (0.01-0.49)  |
| Short term memory         | 0.20*    | (0.01-0.38)  |
| Delayed memory            | 0.45*    | (0.27-0.63)  |
| Working memory            | 0.13     | (-0.02-0.27) |
| Executive functions:      |          |              |
| Inhibitory control        | 0.20*    | (0.11-0.30)  |
| Advantageous choices (GT) | -0.19    | (-0.56-0.18) |
| Planning accuracy         | 0.05     | (-0.19-0.29) |
| Planning time             | -0.14    | (-0.38-0.10) |
| Cognitive perseveration   | 0.01     | (-0.14-0.25) |

llieva et al, 2015; Marraccini et al, 2016

Stimulant medications in Adult ADHD: improve sustained attention but not executive: Advocat, 2010



#### Materials

Penscreen software (V6) for Android Tablets



| Domain                     | Task                                | Format     |
|----------------------------|-------------------------------------|------------|
| General cognitive function | Wechsler Test of Adult Reading      | P&P        |
| Processing speed           | Digit Symbol                        | Electronic |
| Sustained attention        | Rapid Visual Information Processing | Electronic |
| Attention (focus)          | Arrow Flankers                      | Electronic |
| Inhibition                 | Go- No-Go                           | Electronic |
| Switching                  | Trail Making Task                   | P&P        |
| Working memory             | Digit Sequencing                    | P&P        |
| Verbal learning & memory   | Ray Auditory Verbal Learning Task   | P&P        |

All used random stimuli (penscreen) or alternate forms (P&P) to minimise learning

### Participants (n=14)

| 41 (SD=6, 33-51)    |
|---------------------|
| 78% (n=11)          |
| 11 (SD=2; 8-12)     |
| 42% (n=6)           |
| 86% (n=12)          |
| 42% (n=6)           |
| 104 (SD=11, 81-120) |
| 26 (SD=3, 21-30)    |
| 14% (n=2)           |
| 21 (SD=5, 14-28)    |
|                     |

### Results I

All analyses (mixed models) control for sex, Wender-Utah ADHD score, WTAR performance and days MA use



| Cognitive<br>domain   | Measure                     | F (time)# | P(time)# | n  | Baseline vs<br>150mg<br>Hedges' g | Baseline vs<br>250mg<br>Hedges' g | Baseline vs<br>follow-up<br>Hedges' g | 250mg vs<br>follow-up<br>Hedges' g |
|-----------------------|-----------------------------|-----------|----------|----|-----------------------------------|-----------------------------------|---------------------------------------|------------------------------------|
| Processing<br>Speed   | Trail making test<br>(A)    | 3.053     | 0.081    | 14 | 0.08                              | 0.62*                             | 0.33                                  | 0.12                               |
| Switching             | Trail making test<br>(B)^   | 5.412^    | 0.015    | 14 | 0.20                              | 0.32                              | 0.89*                                 | -0.49                              |
| Working<br>memory     | Digit Sequencing<br>Span    | 1.054     | 0.405    | 14 | 0.48                              | 0.27                              | 0.19                                  | 0.05                               |
| Immediate<br>memory   | RAVLT Trial 1               | 0.161     | 0.920    | 14 | 0.05                              | 0.03                              | 0.15                                  | -0.16                              |
| Learning              | RAVLT Trials 1-5            | 3.275     | 0.060    | 14 | 0.29                              | 0.12                              | 0.62*                                 | -0.49                              |
| Memory<br>retention   | RAVLT % Recalled<br>(delay) | 0.779     | 0.535    | 14 | -0.02                             | 0.02                              | 0.31                                  | -0.03                              |
| Recognition<br>memory | RAVLT %<br>recognised       | 0.238     | 0.867    | 14 | 0.21                              | 0.15                              | 0.12                                  | -0.05                              |

Note: \*p<0.05 in adjusted paired comparison

| Cognitive<br>domain    | Measure                                    | F (time)# | P(time)# | n  | Baseline<br>vs 100mg<br>Hedges' g | Baseline<br>vs 150mg<br>Hedges' g | Baseline<br>vs 200mg<br>Hedges' g | Baseline<br>vs 250mg<br>Hedges' g | Baseline<br>vs follow-<br>up<br>Hedges' g | 250mg vs<br>follow-up<br>Hedges' g |
|------------------------|--------------------------------------------|-----------|----------|----|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------|------------------------------------|
| Processing<br>speed    | Digit Symbol<br>reaction time              | 2.684     | 0.071    | 13 | 0.58*                             | 0.65*                             | 0.68*                             | 0.71*                             | 0.64*                                     | 0.11                               |
| Sustained<br>attention | Rapid visual<br>info processing<br>RT      | 2.257     | 0.109    | 13 | 0.17                              | 0.75*                             | 0.55                              | 0.67*                             | 0.32                                      | 0.36                               |
| Sustained<br>attention | Rapid visual<br>info processing<br>correct | 2.457     | 0.111    | 13 | 0.08                              | 0.56                              | 0.70*                             | 0.62*                             | 0.48                                      | 0.08                               |
| Attention              | Arrow flankers<br>RT                       | 9.336     | <0.001   | 13 | 0.81*                             | 1.19*                             | 1.59*                             | 1.59*                             | 0.48                                      | 1.10*                              |
| Attention              | Arrow flankers<br>correct^                 | 3.056^    | 0.024    | 13 | 0.75*                             | 0.13                              | 0.97*                             | 0.65*                             | 0.27                                      | 0.22                               |
| Inhibition             | No-go false<br>positives                   | 6.979     | 0.003    | 13 | 0.77*                             | 0.59*                             | 1.48*                             | 1.12*                             | 1.48*                                     | -0.28                              |

## Results II

All analyses (mixed models) control for sex, Wender-Utah ADHD score, WTAR performance and days MA use



### Basic processing speed (DSST)



#### Attention (Arrow Flankers) (RT)



Numerical value is Hedges' g effect size, \*p<0.05 in adjusted paired comparison

#### Attention (Arrow Flankers) - accuracy



Numerical value is Hedges' g effect size, \*p<0.05 in adjusted paired comparison

#### Inhibitory control (no-go false positives)



Numerical value is Hedges' g effect size, \*p<0.05 in adjusted paired comparison

#### Discussion

- Moderate-large magnitude improvements in processing speed, focussed attention, sustained attention and **inhibitory control** were seen over the course of the trial and were maximal at 200mg and above
- No meaningful changes in working memory, learning, retention and switching
- These performance improvements may reflect:
  - Task learning?
    - Some effects retained at FU, some not; learning *should* be minimal
  - General improvements on speeded tasks due to the presence of stimulatory medication?
    - Perhaps; accuracy also improved
  - Stabilisation of cognitive performance with chronic/tonic stimulant use compared with phasic/intermittent illicit stimulant use?\*
    - Days used MA declined from 21/28 to 16/28 (week 4) and 14/28 FU\*
    - If can stabilise cognition in unstable patients  $\rightarrow$  beneficial\*
- Positive, however:
  - Need to clarify in RCT (test learning/placebo & associations between cognition and functional outcomes)