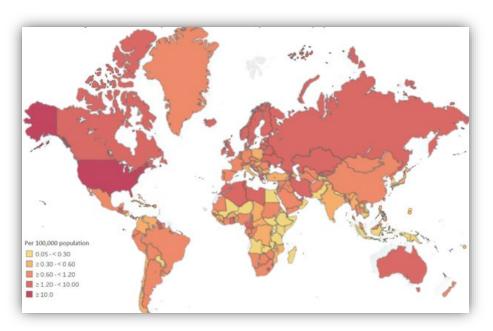


National Drug & Alcohol Research Centre

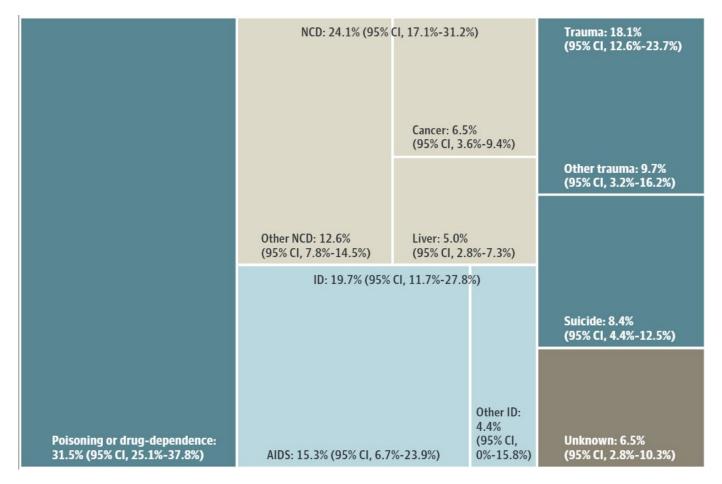
Opioid Agonist Treatment and Mortality Among People With Opioid Dependence

Thomas Santo Jr., Ph.D. Candidate

Disclosure of interests


- I report no conflicts of interest and am supported by an NDARC HDR Scholarship and funding from the Australian Government Research Training Program Fee Offset scholarship and Australian Federal Government Department of Health Grants National Centre Core Funding
- Authors report grants and/or personal fees from National Institute for Health Research & Medical Research Council, Merck Sharp & Dohme, Gilead, AbbVie, Cepheid, Gilead Sciences, Hologic, Indivior, French High Authority of Health, Seqirus United, Australian NHMRC Fellowships, Australian Federal Government Department of Health Grants National Centre Core Funding, and National Institutes of Health Project funding. All grants and conflicts of interest are outside of the presented work.
- Funding comes from multiple sources: NHMRC, NIH, Commonwealth Department of Health, NSW Ministry of Health, UNSW Sydney, Acción Estratégica en Salud, Health Canada Substance Use and Addictions Program, Health Research Board (Ireland), Ministry of Science & Innovation (Spain)
- The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Group or Project Logos


 ~ 40.5 million people with opioid dependence globally (2017)

- People with opioid dependence at 10 times the risk of allcause mortality compared to the general population
- COVID and overdose-related death

Degenhardt et al (2019). The Lancet

Larney et al (2020). JAMA Psychiatry

Evidence for impacts across varied outcomes varies	Extra- medical use	Injecting risks	Opioid overdose	HIV incidence	HCV incidence	Suicide	Injuries
Individual psychosocial interventions	45	¥					
Peer-based self-help groups							
Needle syringe programs (NSP)	×	¥		\checkmark	↓ ?		
Condom provision				\checkmark			
Opioid agonist treatment (OAT)	\checkmark	¥	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Naltrexone – Oral	×	×					
Naltrexone – Implant	\checkmark	\checkmark					
Residential rehabilitation		×					
Detoxification alone	×	-					
HCV antiviral treatment	\checkmark	\rightarrow			\checkmark		
HIV antiretroviral treatment (ART)		×		\checkmark			
Safe injecting centres (SICs)	×	\checkmark	↓ ?	?	?		
Naloxone provision							
Compulsory detention of drug users		Ŷ					
Criminalisation of drug use		1		Ť			

Degenhardt et al (2020). The Lancet

- Limited availability 86 countries
- Poor coverage <20 people per 100 people who inject drugs
- Suboptimal doses
- Limited access to unsupervised dosing
- Urine drug screening, stigma related to OAT

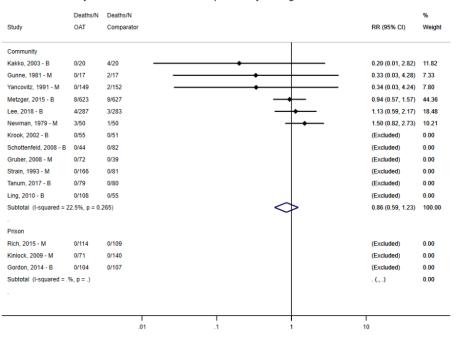
Aims

Review studies of all-cause & cause-specific mortality:

- Primary analyses
 - RCTs
 - Observational, cohort studies
- Secondary aims:
 - Specific time periods during and out of OAT
 - Participant, treatment, & study characteristics
 - During and after release from incarceration

Methods

- Crude Mortality Rates (CMRs) = # Deaths / # Person-Years
 - Within each study
- CMR in OAT versus CMR out of OAT



- Pooled Rate Ratios (RRs)
 - Using Random-effects meta-analyses

• 15 RCTs with 3,582 participants

 40 total deaths reported, 7 of 15 reported zero deaths

All cause mortality in RCTs of OAT and a comparator by setting

Description of observational studies

- 36 cohort studies with ~750k participants
 - 110 to 306,786 participants
 - > 20,000 total deaths reported
- 20 studies from Europe, 6 from Australia, 5 from North America
- 28 studies by methadone, 6 by buprenorphine

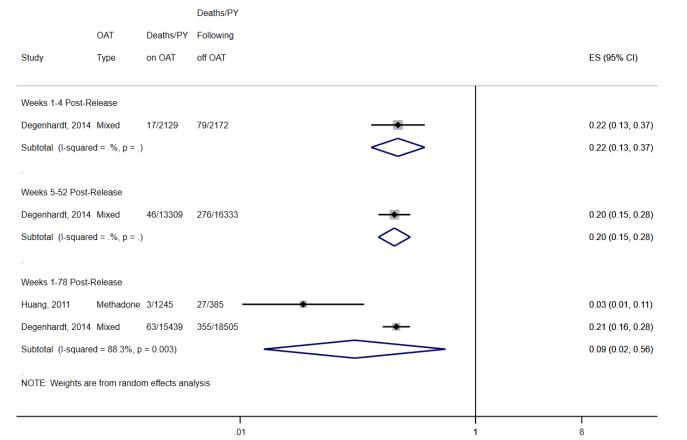
All-cause mortality rates

- Risk of death during OAT more than half the risk than out of OAT
- All-cause mortality ↓ during methadone & buprenorphine treatment

	No. deaths in OAT/	No. deaths out of OAT/	Effect size	Favors	Favors	Weight,
Source	person-years	person-years	(95% CI)	in OAT	out of OAT	%
Buprenorphine						
Chang et al, 61 2015	0/240	7/131	0.04 (0.00-0.64) 🖛			0.94
Digiusto et al, ⁵¹ 2004	0/88	1/13	0.05 (0.00-1.41) 🗲			0.67
Dupouy et al,41 2017	4/1402	25/1818	0.21 (0.07-0.60)			5.85
Pearce et al, ⁶⁹ 2020	87/13190	570/23712	0.27 (0.22-0.34)			27.01
Kimber et al,58 2015	68/22110	324/31817	0.30 (0.23-0.39)			25.49
Reece et al, ⁵⁹ 2010	3/1119	40/6911	0.46 (0.14-1.50)			4.90
Kelty et al, 57 2019	28/6097	78/8619	0.51 (0.33-0.78)			18.48
Hickman et al, ⁴⁵ 2018	20/2877	94/7024	0.52 (0.32-0.84)			16.67
Subtotal 12=52.3% (P=.04))		0.34 (0.26-0.45)	\diamond		100.00
Methadone						
Huang et al, ⁶³ 2011	3/1245	28/719	0.06 (0.02-0.20)			1.15
Chang et al, 61 2015	16/2621	45/1404	0.19 (0.11-0.34)			3.28
Scherbaum et al, 52 2002	18/1114	14/172	0.20 (0.10-0.40)			2.58
Gronbladh et al, ⁴⁴ 1990	16/1085	80/1407	0.26 (0.15-0.44)			3.51
Gearing et al, 67 1974	110/14474	33/1170	0.27 (0.18-0.40)			4.66
Durand et al,42 2020	107/11875	45/1426	0.29 (0.20-0.40)			5.02
Cousins et al, ³⁹ 2016	115/22648	98/6247	0.32 (0.25-0.42)			5.75
Huang et al, ⁶³ 2013	13/551	13/209	0.38 (0.18-0.82)			2.27
Evans et al, ⁶⁶ 2015	163/25277	868/51380	0.38 (0.32-0.45)			6.62
Appel et al, ⁶⁵ 2000	93/6130	83/2355	0.43 (0.32-0.58)			5.50
Pearce et al, ⁶⁹ 2020	2085/188113	4237/174431	0.46 (0.43-0.48)	=		7.24
Fugelstad et al, 43 2007	77/3354	108/2171	0.46 (0.34-0.62)			5.53
Weber et al, 53 1990	7/169	33/371	0.47 (0.21-1.06)		-	2.08
Ledberg et al, ⁷⁰ 2017	36/1493	31/662	0.51 (0.32-0.83)			3.91
Liu et al, ⁶⁴ 2013	1527/190646	4046/282059	0.56 (0.53-0.59)	-		7.23
Kimber et al, ⁵⁸ 2015	750/136200	1777/183696	0.57 (0.52-0.62)			7.12
Hickman et al, ⁴⁵ 2018	106/9926	266/17517	0.70 (0.56-0.88)			6.14
Kelty et al, 57 2019	59/8893	99/10569	0.71 (0.51-0.98)			5.26
Cousins et al, ³⁸ 2011	61/4068	79/4313	0.82 (0.59-1.14)		-	5.15
Fellows-Smith et al, 56 2011	14/1922	23/3096	0.98 (0.50-1.91)			2.74
Muga et al, ⁴⁹ 2014	299/9685	142/5439	1.18 (0.97-1.44)		-	6.36
Morozova et al, ⁴⁸ 2013	6/13	3/12	1.83 (0.46-7.31)			0.89
Subtotal 1 ² = 90.0% (P <.00	1)		0.47 (0.41-0.54)	•		100.00
			0.01	0.1		1 10
			0.01	U.1 Effect size (95%)		10
				LITELL 3126 (32%)	-17	

Lower risk of mortality during OAT across participant, treatment, & study characteristics

Participant characteristics	Rate Ratios (95% Cls)
Women	↓ 44 %*
Men	↓ 55 %*
Age	
<35 years	↓ 52 %*
>=35 years	↓ 52 %*
People who inject drugs	↓ 48 %*
HIV+	↓ 44 %*
HCV+	↓ 47 %*
Treatment provider	
Specialist	↓ 69 %*
GP/mixed/other	↓ 53 %*



Cause of Death (ICD Coding)	# Studies	Association
Drug-related	22	↓ 58 % *
Unintentional opioid deaths	13	↓ 71 %*
Suicide	14	↓ 52 % *
Alcohol-related	15	↓ 41 % *
Cancer	14	↓ 28 % *
Cardiovascular disease	14	↓ 31 %*

- No association with Injection Related Injuries and Diseases
- No association with liver-related, respiratory disease, digestive disorders, influenza, HIVrelated deaths
 - However strong association among people with HIV
- Increased association with hepatitis-related death likely due to misclassification
 - Sensitivity analyses
 - Strong association among people with HCV
 - OAT associated with uptake in HCV testing & treatment (Grebely et al, 2021)

After release from incarceration (follow-up in/out of OAT)

National Drug & Alcohol Research Centre

UNSW NDARC • Most studies at moderate risk of bias – largely due to confounding

- 19 studies adjusted for confounding in their analyses
 - 17 of 19 found reductions in all-cause / overdose-related mortality after adjusting for confounders

Conclusions

- OAT strongly associated with lower risk of mortality (\downarrow 51%)
- Lower risk of multiple causes of mortality in OAT...
 - Suicide (52%), cancer (28%), alcohol-related (41%), cardiovascular-related (31%), and drug-related mortality (59%)
- Mortality 6 times ↑ leaving OAT in first month vs. in OAT more than 1 month
- Unortality risk in OAT during and after release from incarceration

- Study **power** (Data from ~750k participants, ~ 2 million PYs)
- Strength of association
 - All-cause mortality in vs. out of OAT (RR, 0.47; 95% CI,0.42-0.53)
- 19 studies adjusted for confounding \rightarrow similar results

Conclusions

- Reduced risk of alcohol-, cancer- & cardio-vascular related death
 - Related to reduced alcohol / stimulant use during OAT?

 More access to screening, early intervention, and treatment engagement while receiving OAT

- Increase access & coverage of OAT for people with opioid dependence
- Improve retention & support for those who leave OAT
- Reduced risk of mortality during induction to treatment
 - Particularly for methadone

Future research & limitations

- Data linkage studies
 - Adjustment for confounding
- Studies that analyse type of OAT delivery
 - Adjunct services
- Few studies among people with opioid dependence during and after incarceration

Thank you

Co-authors: Brodie Clark; Matt Hickman; Jason Grebely; Gabrielle Campbell; Luis Sordo; Aileen Chen; Lucy Thi Tran; Chrianna Bharat; Prianka Padmanathan; Grainne Cousins; Julie Dupouy; Erin Kelty; Roberto Muga; Bohdan Nosyk; Jeong Min; Raimondo Pavarin

Funding from multiple sources: NHMRC, NIH, Commonwealth Department of Health, NSW Ministry of Health, UNSW Sydney, Acción Estratégica en Salud, Health Canada Substance Use and Addictions Program, Health Research Board (Ireland), Ministry of Science & Innovation (Spain)

Participants and health providers that shared their data

Conclusions

- OAT strongly associated with lower risk of mortality (\downarrow 51%)
- Lower risk of multiple causes of mortality in OAT...
 - Suicide (52%), cancer (28%), alcohol-related (41%), cardiovascular-related (31%), and drug-related mortality (59%)
- Mortality 6 times ↑ leaving OAT in first month vs. in OAT more than 1 month
- Unortality risk in OAT during and after release from incarceration

