

HAND has a relapsing and remitting profile

Study duration: 16-72 (mean, 35) months

US data Robert K. Heaton et al. Clin Infect Dis. 2015

HAND International figures (all ages)

Table 4. HAND prevalence in other international settings using the same neuropsychological test battery.

N	Age	Education	% Male	NCI
	(Mean, SD)	(Mean, SD)		Prevalence
947	40.5 (9.4)	12.9 (2.5)	69%	36%
199	40.3 (6.2)	5.9 (2.1)	63%	35%
403	35.8 (5.8)	9.8 (2.4)	66%	39%
246	32.1 (8.0)	10.3 (3.5)	57%	45%
69	37.4 (8.1)	10.2 (2.9)	68%	33%
366	37.4 (12.7)	11.0 (2.5)	48%	35%
	947 199 403 246 69	(Mean, SD) 947 40.5 (9.4) 199 40.3 (6.2) 403 35.8 (5.8) 246 32.1 (8.0) 69 37.4 (8.1)	(Mean, SD) (Mean, SD) 947 40.5 (9.4) 12.9 (2.5) 199 40.3 (6.2) 5.9 (2.1) 403 35.8 (5.8) 9.8 (2.4) 246 32.1 (8.0) 10.3 (3.5) 69 37.4 (8.1) 10.2 (2.9)	(Mean, SD) (Mean, SD) 947 40.5 (9.4) 12.9 (2.5) 69% 199 40.3 (6.2) 5.9 (2.1) 63% 403 35.8 (5.8) 9.8 (2.4) 66% 246 32.1 (8.0) 10.3 (3.5) 57% 69 37.4 (8.1) 10.2 (2.9) 68%

HIV Neurobehavioral Research Program data provided in Knut et al. JAIDS In press

- Entirely virally suppressed cohort=5
- Appropriate HIV- control group=13
- Heterogeneity in segmentation softwares and analytic platforms
- Report of HAND prevalence not systematic
- Inclusion of key biomarkers relevant to chronic HIV infection inconsistent

Subcortical atrophy is more prominent Cortical differences depends on methods

HIV *age interaction effect was inconsistently observed

Longitudinal studies are just emerging

Most robust risk factors for atrophy: Age, HAND severity, Low nadir CD4, HIV duration, longer ART exposure

Emerging/less robust risk factors for atrophy: Detectable/Residual CSF HIV RNA; Higher cholesterol, Diabetes; plasma HIV DNA; smoking; early life trauma, old age, accelerated aging, accentuated aging

No gender difference (1 study)

Compared to NP-normal

Enlarged lateral ventricles Reduced caudal-middle-**Reduced caudal-anterior-Reduced inferior-parietal** WM (p=.04, β=-.33)

From: No Evidence for Accelerated Aging-Related Brain Pathology in Treated Human Immunodeficiency Virus: Longitudinal Neuroimaging Results From the Comorbidity in Relation to AIDS (COBRA) Project Clin Infect Dis. 2018;66(12):1899-1909. doi:10.1093/cid/cix1124

Clin Infect Dis. 2018;66(12):1899-1909. doi:10.1093/cid/cix1124 Clin Infect Dis. 2018;66(12):1899-1909. doi:10.1093/cid/cix1124 Clin Infect Dis.] © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.pemissions@oup.com/libithed and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

10

Diffusion Tensor Imaging: HIV * aging: Results

1 st Author date	FA	MD	Comments	
Chang 2008	HIV effect (parietal WM)	HIV effect (frontal WM) HIV *age effect (CC genu)	Trends for HIV*age effect in putamen but meaning of MD is different in non- WM	
Nir 2014	HIV effect (+CC, across the WM)	HIV effect (across the WM) Also for AD and RD	No HIV*age effect WM changes correlated with age Lower cognition correlated with WM changes Older participants but restricted range	
Seider 2016	Age effect HIV*age effect	-	No HIV effect on FA HCV effect on FA	
Khun 2018	Predicted brain age metrics	gap (BAG) from DTI	(b) 40 Brain age gap	
2018 metrics				

Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res 2014;39:1-36.

12

13

Non-pharmacological Interventions

Risk Reduction strategies for HAND & dementia

Non Pharmacological Interventions are being tested with encouraging results, but need large RCTs

- Cognitive training, Psychosocial management, Exercise training
- Multimodal interventions (Physical & mental activity, nutrition, sleep, social engagement, emotional health, substance use) https://www.ncbi.nlm.nih.gov/pubmed/28669770

Healthy Ageing recommendations

- Peer support, reduction of stigma, reduction of social isolation
- Being proactive about Mental health
- Keep cognitively and physically active & reduce cardiovascular diseases risk factors
- Healthy lifestyle strategies and maintained a positive outlook living with HIV

Are older PLHIV health care needs met?

- AIDS Survivor Syndrome
- Care accessibility
- Training of professionals to reduce stigma
- Plan for multi-morbidity assessment in geriatric PLHIV
- Longitudinal studies on cognitive and mental health are needed
- Risk of dementia starts to increase in the general population at age 60+
- We need to know what is the risk of dementia in PLHIV aged 60+

Acknowledgements

Mentors & Collaborators & Postdocs & RAs

Prof. Bruce Brew & Neuroscience Unit team at AMR Prof. Lindy Rae @ NeuRA & NIF team, & Prof. Rolan Henry @ UCSF Prof. Robert K. Heaton & UCSD HNRP team Prof. Sean Rourke & team @ Uni Toronto Prof. Paul Maruff & CogState team A/Prof. Edwina Wright @ the Burnett and START Neurology team A/Profs. Mark Bloch, Giovanni Guaraldi & HAND GP/Frailty study team Prof. Lynne Bilston @ NeuRA Prof. Andrew Carr, John McAllister & SVH ID team Drs. John Zaunders, Kazuo Zuzuki, Prof. John Murray @ Kirby/AMR & AMR HIV lab team Prof. Steven Miekle @ Usyd Mr. David Crawford @ Positive Life Dr. Lauriane Jugé @ NeuRA Thomas Gates @ SVH Lulxi Lal @ the Burnett Dr. Vincent Oxenham, Jessica Patti, Danielle Moore, Josh Hood & Students: David Jakabek, Michael Tobia, Maddie Nichols. James Soares, Emma Hubner, Lucie Swaffield, Tammy Lane, Nadene Dermody, Chloe Gott, Dr. Krista Siefried, Samantha Brunt, Will Cunningham, Timothy Hewitt , Grace Lu, Jody Kamminga, Kimberley Bassett, Nicola Earls

Funding support

NHMRC (APP568746; APP1045400, CIA/PI Cysique) NIH, CIHR Peter Duncan Neuroscience Unit (Director: Prof. Brew) NAPWHA, MSD, Gilead, CogState, Abbvie

THANKS to the participants for their time

Prof. Edwina Wright Prof. Sean Rourke