

CRISPR-Cas mediated detection of monkeypox virus

Towards point-of-care testing

Shivani Pasricha

Williamson Lab, Department of Infectious Diseases and Immune Defence

Walter and Eliza Hall Institute of Medical Research

We would like to acknowledge the traditional custodians of the land on which the conference is taking place, the Gadigal people of the Eora Nation, and pay our respects to their elders past, present, and emerging.

2022 mpox outbreak – WHO declares Health Emergency

Outbreak: May - Nov 2022 – over 80,000 new cases of mpx in 110 countries

Cases: Predominately reported in men who have sex with men (MSM), with cases also described in women and infants

Monkeypox virus: Orthopoxvirus with dsDNA (~197 kb)

Diagnostics – predominately PCR, serologically crossreactive with other orthopoxviruses - antigen and antibody detection methods lack specificity

Limited approved point-of-care (POC) tests for mpox – transmission prevention

Global Problem

Accurate diagnosis relies on expensive centralised laboratory tests (NAATs - PCR)

Impacts diagnostic strategies to interrupt transmission and prevent endemicity

Current challenges in Australia

Access & Duration - over two weeks for clinical samples to be processed from remote settings

Testing Platforms - small number of available testing platforms

Outbreak/Emerging Pathogen Response – critical shortages of reagents lead to extreme delays

Designing novel nucleic acid based POC tests for infectious diseases

The WHO 'ASSURED' criteria for diagnostic assays:

Affordable Sensitive Specific User-friendly Rapid and robust Equipment-free Deliverable to end users

Monkeypox virus detection using the MPV-CRISPR assay

MPV-CRISPR workflow:

- 1. Genomic DNA extraction
- 2. Pre-amplification using RPA (20 min)
- 3. CRISPR-Cas12a assay (20 min)
- 4. Two possible readouts:
 - 1. Fluorescence OR
 - 2. Lateral flow

Exploiting the CRISPR-Cas system for diagnostics

Highly specific target cleavage

Step 1: Design and evaluate performance of guide RNAs

- CRISPR gRNAs and RPA primers were designed using a database of 523 MPV genomes
- 7 guides 22 sets of primer/gRNA were tested

Monkeypox virus genome

Step 1: Design and evaluate performance of guide RNAs

Step 2: Testing analytical sensitivity (LOD) and specificity

Detects single genome copies/ µL with no cross-reactivity

Step 3: Validation of MPV-CRISPR assay using clinical samples Blind test of 185 clinical samples including oral, anal and skin lesion specimens

Step 3: Validation of MPV-CRISPR assay using clinical samples Strong concordance between MPV-CRISPR and gold-standard qPCR

	MPV-CRISPR	
Method	fluorescence readout	
	4 min (Ct ≤35)	
True positive	40	
False negative	0	
Sensitivity (%)	100 (95% CI: 89-100)	
Positive predictive value (%)	97.6 (95% CI: 86-100)	
True negative	144	
False positive	1	
Specificity (%)	99.3 (95% CI: 96-100)	
Negative predictive value (%)	100 (95% CI: 97-100)	

MPV-CRISPR assay with fluorescence readout was performed with two experimental repeats, with at least one positive repeat interpreted as a positive result. All MPV-positive samples detected within first 5 minutes

- 100% Sensitivity, 99.3% Specificity
- Discrepancies associated with low viral load samples

MPV-CRISPR assay with lateral flow readout capability

Validation of MPV-CRISPR assay using lateral flow readout

Strong concordance between MPV-CRISPR and gold-standard qPCR

Method	Concordance		
	(Positive if Ct ≤35)		
	Visual	Computational	
	(n=3)		
True positive	40	40	
False negative	0	0	
Sensitivity (%)	100 (95% CI: 89-100)	100 (95% CI: 89-100)	
Positive predictive value (%)	95.2 (95% CI: 83-99)	95.2 (95% CI: 83-99)	
True negative	143	143	
False positive	2	2	
Specificity (%)	98.6 (95% CI: 95-100)	98.6 (95% CI: 95-100)	
Negative predictive value (%)	100 (95% CI: 97-100)	100 (95% CI: 97-100)	

- 100% sensitivity, 98.6% specificity
- Lateral flow readout showed 96% concordance with fluorescence readout
- Discrepancies associated with low viral load samples

Immediate goals

Dual-target assay design and moving from modular to one-pot

Acknowledgements

Williamson Lab Group, WEHI

Shivani Pasricha

Matthew O'Neill

William Kerry

WEHI

Marc Pellegrini Lewis Williams James Cooney Lachlan Whitehead Williamson Lab Group, University of Melbourne Deborah Williamson

Soo Jen Low

Marcelina Krysiak Jacqueline Prestedge Chuan Lim George Taiaroa Mona Taouk Simran Chahal Melbourne Sexual Heath Centre Christopher Fairley Marcus Chen Eric Chow Janet Towns Catriona Bradshaw VIDRL, Melbourne Health Leon Caly

Georgina Papdakis

Thomas Tran

Thank you

f WEHIresearch

You WEHImovies

WEHI_research

in Walter and Eliza Hall Institute

Validation of MPV-CRISPR assay using lateral flow readout

LFA showed 96.6% concordance with fluorescence readout

LF strips interpretated manually by eye

- 3 independent untrained observers.
- The overall verdict was based on the majority consensus of the three individuals

LF strips interpretated **computationally** using ImageJ

- Band intensity
- Sample defined as positive if at least one of the repeats had a minimum test line brightness of ≤177.6

RPA – Recombinase polymerase amplification

Labato & Sullivan (2018)

Recombinase proteins form complexes with each primer (A), which scans DNA for homologous sequences (B). The primers are then inserted at the cognate site by the strand-displacement activity of the recombinase (C) and single stranded binding proteins stabilise the displaced DNA chain (D). The recombinase then disassembles leaving the 3'-end of the primers accessible to a strand displacing DNA polymerase (E), which elongates the primer (F). Exponential amplification is achieved by cyclic repetition of this process.

Exploiting the CRISPR-Cas system for diagnostics

Highly specific target cleavage

Adapted from Kim et al. 2021 (Biomolecules) & https://www.newsmedical.net/news/20201004/Rapid-detection-of-SARS-CoV-2-withportable-CRISPR-based-mobile-phone-diagnostic-test.aspx

Can the RPA reaction and the CRISPR reaction occur in the same tube?

CRISPR-diagnostic tools for point of care (POC) detection

- COVID-19 (DETECTR, AIOD-CRISPR, STOPCovid)
- Zika (SHERLOCK)
- Dengue (SHERLOCK)
- HPV (DETECTR)
- Ebola (SHERLOCK)
- Multiple other infectious diseases