

DAA treatment among people who use or inject drugs: a systematic review and meta-analysis

Behzad Hajarizadeh, Evan B Cunningham, Hannah Reid, Matthew Law, Gregory J Dore, and Jason Grebely

The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia

The Lancet Gastroenterology & Hepatology 2018 (Published Online September 21, 2018; http://dx.doi.org/10.1016/S2468-1253(18)30304-2

Disclosure

None to disclose

- people with recent drug use (injecting or noninjecting),
- o people with recent injecting drug use,

- o people receiving opioid substitution therapy (OST).
- To assess the factors explaining heterogeneity across studies.

JUNSW

M.

Methods – Eligibility criteria

- Studies investigating DAA treatment outcome among people with HCV infection, if they met all the following criteria:
 - a) Study population included defined populations of people with recent drug use or people receiving OST
 - b) Treatment included interferon-free DAA regimens
 - c) Both treatment completion and SVR were reported.

			Keyhatte
Results	5		
		Study n (%)	
	Study design		
	Observational	28 (74%)	
	Clinical trial	10 (26%)	
	Study setting		
	Community clinic	3 (8%)	
	Drug treatment service	11 (29%)	
	Primary care	3 (8%)	
	Tertiary care	5 (13%)	
	Mixed	13 (34%)	
	Other/Not reported	3 (8%)	
	Definition of "recent drug use"		
	During the past 1 or 3 months	7 (19%)	
	During the past 6 or 12 months	12 (31%)	
	At initiation or during DAA therapy	9 (24%)	
	Ongoing or active drug use	3 (8%)	
	Combination of two definitions	4 (11%)	
	Not reported	3 (8%)	

Results

9

Overlapping study population or sub-population

	Study n	Participant n	Participant n in each study, range
Total	38	3,634	16 - 472
Recent drug use (with or without OST)	21	1,408	9 – 235
OST (with or without recent drug use)	36	2,987	16 - 472

Exclusive study population or sub-population

	Study n	Participant n	Participant n in each study, range
Recent IDU (with or without OST)	8	670	18 - 163
OST (with or without recent drug use)	25	2,331	14 – 472
Other	10	633	21 – 137
Total	45	3,634	

	SVR (95% CI)
NU I U (200 0)3	
Alimohammadi (2018) ³⁴	
Boglione (2017) ³⁴	93.9% (89.1–96.6)
Boscaillou (2017) ³⁵	80·4% (73·0-86·2)
Conway (2017) ³⁰	96 ·2% (87·3-99·0)
Dore (2016) ¹⁰	
ckhardt (2018) ³⁷	88·9% (76·5-95·2)
inessi (2017) ³⁸ —	79.2% (59.5–90.8)
rebely (2017a)40	———— 84.6% (66·5–93·9)
irebely (2018) ³⁹	94-2% (87-9-97-3)
itwin (2016) ⁴¹	- 97·1% (85·1–99·5)
Aason (2017) ²⁵	90.9% (72.2–97.5)
Mazhnaya (2017)42	■ 64·0% (44·5–79·8)
Ailne (2017) ²⁶	
Aorris (2017) ²⁷	
lorton (2017) ⁴³	95·2% (77·3–99·2)
louch (2018) ²⁸ –	 76·5% (60·0–87·6)
ead (2017) ³⁰	65·3% (55·3-74·1)
cherz (2017) ³¹	100.0% (70.1–100.0)
chütz (2018) ⁴⁴	100.0% (85.7-100.0)
alenci <u>a (2017)⁴⁵ </u>	74.4% (59-8-85.1)
Overal (1²=78·2%, p=0·005)	⁽³⁾ 87.7% (84.2–91.3) 87 7 7

				Keyhatue
Results – I	FT SVR, individuals on O	ST		
	Ahmed (2016) ⁿ Almobarmadi (2018) ^p Boglice (2017) ¹⁰ Boglice (2017) ¹⁰ Boglice (2017) ¹⁰ Boglice (2017) ¹⁰ Boglice (2017) ¹⁰ Boglice (2017) ¹⁰ Boglice (2017) ¹⁰ Christmen (2018) ⁴¹ Christmen (2018) ⁴¹ Ekhadt (2018) ¹⁰ Ekhadt (2018) ¹⁰ Bolice (2017) ¹⁰ Grebely (2016) ¹⁰ Grebely (2017) ¹⁰ Grebely (2017) ¹⁰ Grebely (2017) ¹⁰ Bolice (201	$\begin{array}{c} 1000\%,(91.8-1000)\\ 868\%,(778-92.4)\\ 971\%,(855-99.5)\\ 873\%,(766-93.7)\\ 771\%,(61.6-87.9)\\ 908\%,(85,4-94.3)\\ 831\%,(72-90.3)\\ 850\%,(81-87.9)\\ 97\%,(82.8-87.5)\\ 838\%,(82-92.4)\\ 909\%,(87.1+93.7)\\ 875\%,(69.0-95.7)\\ 792\%,(59.6-8.91.9)\\ 943\%,(68-9.92.4)\\ 943\%,(68-9.93.4)\\ 943\%,(68-9.4)\\ 943\%,(68-$	▶ 90.7	%
	SVR			

Results

Overlapping study population or sub-population

	Study n	Participant n	Participant n in each study, range
Total	38	3,634	16 - 472
Recent drug use (with or without OST)	21	1,408	9 – 235
OST (with or without recent drug use)	36	2,987	16 - 472

Exclusive study population or sub-population

	Study n	Participant n	Participant n in each study, range
Recent IDU (with or without OST)	8	670	18 - 163
OST (with or without recent drug use)	25	2,331	14 – 472
Other	10	633	21 – 137
Total	45	3,634	

13

Results - ITT SVR, individuals with recent IDU

esults – ITT SVR	, individuals o	n OST		
Al		100.02 (01.9.100.0)		
Anmed (2010)**	1	100.0% (91.8-100.0)		
Bielen (2017) ²²		97.1% (05.5-99.5)		
Boyle (2017)**		90.0% (05.4-94.3)		
Christopson (2018)48		85.0% (81.5.87.0)		
Conway (2017) ³⁶		80.8% (67.1-91.5)		
Dillon (2017) ⁴⁹		83.8% (68.9-92.4)		
Dore (2016) ¹⁰		90.9% (87.1-93.7)		
Grebely (2016) ¹¹		94.3% (86.2-97.8)		
Grebely (2016) ¹³		96.1% (86.8-98.9)		
Grebely (2017)40		96.2% (91.9-98.2)		
Grebely (2017)22		94.4% (87.7-97.6)		
Grebely (2017)50		94.0% (88.9-96.8)		
Litwin (2017) ⁵¹		93.9% (88.5-96.9)		
Macias (2017) ²³		87.9% (82.7-91.8)		
Manolakopoulos (2017) ²⁴	-	81.6% (68.6-90.0)		
Mazhnaya (2017)42		70.3% (54.2-82.5)		
Milne (2017) ²⁶		83.3% (66.4-92.7)		
Norton (2017)43		100.0% (78.5-100.0)		
Øvrehus (2018)52		75.0% (50.5-89.8)		
Scherz (2017) ²⁹		92.2% (83.0-96.6)		
Schütz (2018)44		100.0% (91.2-100.0)		
Talal (2017)53		93.3% (82.1-97.7)		
Valente (2017) ⁵⁴		100.0% (88.7-100.0)		
Xvnotroulas (2017)55		100.0% (84.5-100.0)		
Overall (l ² =79-5%, p<0-0001)	\diamond	92.6% (90.2-94.9)	92.6	5

0.924

19

Results – Meta-regression, IT	SVR	
	Unadjusted models OR (95% Cl)	Р
Proportion of participants with recent drug use	0.95 (0.89-1.02)	0.171
Proportion of participants receiving OST	1.08 (0.99-1.19)	0.066
Proportion of men	0.78 (0.59-1.03)	0.084
Median/mean age	1.06 (1.01, 1.12)	0.013
Proportion of participants with cirrhosis	1.00 (0.87-1.14)	0.997
Proportion of treatment experienced participants	1.10 (0.90-1.35)	0.324
Proportion of participants with HIV co-infection	0.87 (0.77-0.98)	0.021
Study design		
Observational	1.00	
Clinical Trial	2.09 (1.23-3.57)	0.008
Study population		
Recent IDU, with or without OST	1.00	
OST, with or without recent IDU/non-IDU	1.47 (0.76-2.84)	0.250

0.96 (0.44-2.09)

Other

		👙 UNSW 🛛 🔣 Kristi
Results – Meta-regression, ITT	SVR	
	Unadjusted models OR (95% CI)	Р
Proportion of participants with recent drug use	0.95 (0.89-1.02)	0.171
Proportion of participants receiving OST	1.08 (0.99-1.19)	0.066
Proportion of men	0.78 (0.59-1.03)	0.084
Median/mean age	1.06 (1.01, 1.12)	0.013
Proportion of participants with cirrhosis	1.00 (0.87-1.14)	0.997
Proportion of treatment experienced participants	1.10 (0.90-1.35)	0.324
Proportion of participants with HIV co-infection	0.87 (0.77-0.98)	0.021
Study design		
Observational	1.00	
Clinical Trial	2.09 (1.23-3.57)	0.008
Study population		
Recent IDU, with or without OST	1.00	
OST, with or without recent IDU/non-IDU	1.47 (0.76-2.84)	0.250
Other	0.96 (0.44-2.09)	0.924

Results – Meta-regression, ITT SVR

	Adjusted model OR (95% Cl)	Ρ
Participants with recent drug use		
Participants receiving OST	1.04 (0.96-1.12)	0.364
Men	1.07 (0.82-1.39)	0.612
Median/mean age	1.07 (1.02-1.12)	0.008
Participants with HIV co-infection	0.96 (0.86-1.07)	0.427
Study design		
Observational	1.00	
Clinical Trial	2.18 (1.27-3.75)	0.006

Results – Meta-regression						
TT SVR						
	Unadjusted OR (95% CI)	Р	Adjusted OR (95% CI)	Р		
Study design						
Observational	1.00		1.00			
Clinical Trial	2.09 (1.23-3.57)	0.008	2.18 (1.27-3.75)	0.00		
reatment completion	on					
Observational	1.00		1.00			
Clinical Trial	1.90 (1.20-3.01)	0.018	1.45 (0.87-2.43)	0.14		
oss to follow-up						
Observational	1.00		1.00			
Clinical Trial	0.45 (0.22-0.93)	0.032	0.45 (0.22-0.94)	0.03		
nITT SVR						
Observational	1.00		1.00			
Clinical Trial	1 86 (1 15-3 05)	0.013	1.36 (0.73-2.56)	0.32		

👰 UNSW 🛛 帐

🍓 UNSW

Limitation

- Given the relatively recent availability of DAA treatment, it is
 possible that the study populations were those who were more
 motivated to receive treatment and therefore less representative
 of people with recent drug use in general.
- · Definitions for recent drug use varied across studies.
- Several studies conducted interventions to enhance adherence, such as directly observed therapy, group treatment, and nurse or peer support. The effect of these interventions on treatment outcome was not assessed in this study given the wide heterogeneity among interventions.
- We did not include the study setting in meta-regression analysis given that most studies, particularly multi-centre studies, had been conducted in more than one setting, and could not be assigned to a single study setting category.

👵 UNSW

Conclusion

- This study showed favourable DAA treatment outcome among people with recent drug use and those receiving opioid substitution therapy.
- Lower SVR was observed among people who have recently ٠ used drugs (both injecting and non-injecting), with posttreatment loss to follow-up primarily contributing to the decreased SVR in this population.
- Clinical trials had higher SVR and lower loss to follow-up, ٠ compared to observational studies.
- Collectively, this study provides robust evidence to inform clinical and public health management of HCV infection among people who inject drugs.

25

Zhenzhen Zhang, Emily Olson Dumas (USA) Robert Hyland, Luisa Stamm, Joe Llewellyn (USA) Naveed Janjua, Maryam Darvishian (Canada) Alain Litwin, Brianna Norton, Matthew Akiyama, Linda Agyemang (USA)

- Olga Anagnostou, John Xynotroulas (Greece).