EXTENDING THE CAPABILITY OF CRISPR-DIAGNOSTICS TO DEVELOP A POINT-OF-CARE-TEST FOR SYPHILIS AND HERPES SIMPLEX VIRUS DETECTION

Authors:

Low SJ^{1,2}, O'Neill MT², Kerry WJ², Fernando J¹, Krysiak M¹, Prestedge J^{2,3}, Papadakis G³, Azzato F^{1,3}, Tran T³, Wigan R^{4,5}, Chow EP^{4,5,6}, Bradshaw C^{4,5}, Fairley C^{4,5}, Lim CK^{2,3}, Chen MY^{4,5}, Williamson DA¹, Pasricha S^{1,2}

¹Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia, ²Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia, ³Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia, ⁴Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia, ⁵Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia, ⁶Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.

Background:

Left untreated, syphilis results in substantial disease and morbidity, and is often misdiagnosed as herpes simplex virus (HSV) due to similar clinical presentations. Annually, syphilis, caused by *Treponema pallidum* (TP) leads to over 300,000 avoidable stillbirths and neonatal deaths worldwide. However, early diagnosis in pregnancy can prevent almost 100% of mother-to-child transmission. As current diagnostics rely largely on centralised laboratory testing, we aimed to develop a point-of-care test (PoCT) to detect and distinguish between TP and HSV infections.

Method:

A multiplexed CRISPR-Cas test with isothermal pre-amplification (TP-HSV-CRISPR) was developed for the detection of TP and HSV using Cas12a and Cas13a, respectively, targeting two genes for each pathogen. Where relevant, reflex testing is performed to distinguish HSV-1 from HSV-2. Candidate primer and guide RNA sets were designed using an in-house bioinformatic pipeline, and multiplexed sets producing the strongest signal using a fluorescence-based readout were selected. TP-HSV-CRISPR was evaluated for analytical sensitivity and specificity on a portable isothermal fluorimeter using serial dilutions of target gDNA and gDNA from a panel of viral and bacterial pathogens. Additionally, clinical validation was performed on gDNA from 400 specimens obtained from multiple body sites.

Results:

Fully integrated onto a PoC device, the time from sample to answer is approximately 35 minutes. The test can detect single copies per μ L of bacterial gDNA and displays 100% analytical specificity against a panel of relevant bacterial and viral pathogens. Results from the clinical validation align with the World Health Organisation target product profile for syphilis PoCTs.

Conclusion:

We have developed a novel CRISPR-based multiplexed PoCT for the detection of TP and HSV. The useability of the test presents a potential solution to increase testing access across high-risk communities and settings, anticipated to mitigate the risks of syphilis being underdiagnosed.

Disclosure of Interest Statement:

Authors declare no competing interest.