

Background

- Injecting drug use (IDU) is one of the most frequent routes of HIV transmission globally [1]
- Among HIV population, people who inject drugs (PWID) have poorer response to treatment, higher rates of coinfection, increased risk of virological and immunological failure [2-3]
- In Australia, the Needle-syringe Program (NSP) has had great success in reducing the rate of transmission among PWID [4]

Objectives

- · Investigate PWID within the Australian HIV population
- Compare disease and treatment outcomes between IDU and non-IDU population
 - · All-cause mortality
 - · Virological suppression
 - · Virological failure after suppression
 - · Regimen switch/interruption

3

Study population

- AHOD (Australian HIV Observational Database) [5]
- Established in 1999
- · Monitor patterns of ART uptake
- Monitor long-term outcomes immunological, virological, AIDS and death

Inclusion criteria

- · All AHOD participants that initiated cART after 1 Jan 1997
- · Have relevant HIV exposure data, split by:
 - Injecting drug use (IDU) only
 - · IDU and men who have sex with men (IDU+MSM)
 - Other

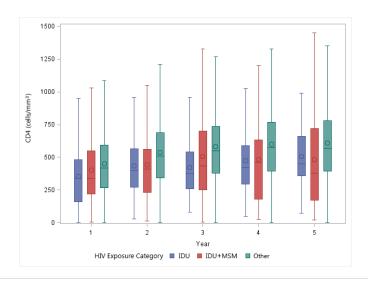
Methods

- Cox regression methods used to assess the time to
 - All-cause mortality (since cART initiation)
 - First virological suppression (first VL<400 since cART initiation)
 - Virological failure (first VL>1000 since first suppression)
 - First regimen switch/interruption (change of 2 agents of the same class or change of 1 agent of a new class or if patient experienced treatment interruption of >30 days)
- Covariates: mode of HIV exposure, site, age, sex, region of birth, smoking, HCV, HBV, year of ART start, CD4 (at initiation), Viral Load (at initiation)
- Covariates are selected using backward selection with criteria for retention p=0.05

5

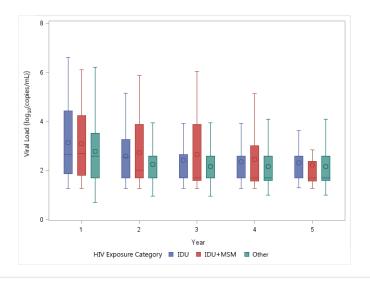
Baseline characteristics

	IDU	IDU+MSM	Other
	N=71	N=82	N=2575
Site			
General practitioner (GP)	16 (22.5)	8 (9.8)	918 (35.7)
Tertiary hospital (TH)	15 (21.1)	18 (22.0)	488 (18.9)
Sexual Health Clinic (SHC)	40 (56.3)	56 (68.3)	1169 (45.4)
Age			
<30	16 (22.5)	16 (19.5)	397 (15.4)
30-39	34 (47.9)	39 (47.6)	949 (36.9)
40-49	13 (18.3)	18 (22.1)	741 (28.8)
≥50	8 (11.3)	9 (11.0)	488 (18.9)
Sex			
Female	10 (14.1)	0 (0)	234 (9.1)
Male	61 (85.9)	82 (100)	2341 (90.9)
Region of birth			
Australia & NZ	44 (61.9)	44 (53.7)	1404 (54.5)
Asia	5 (7.1)	2 (2.4)	225 (8.7)
Other	8 (11.3)	5 (6.1)	411 (16.0)
Missing	14 (19.7)	31 (37.8)	535 (20.8)
Ever smoked			
No	2 (2.8)	3 (3.7)	408 (15.8)
Yes	15 (21.1)	18 (21.9)	516 (20.1)
Missing	54 (76.1)	61 (74.4)	1651 (64.1)


Baseline characteristics (cont)

	IDU	IDU+MSM	Other
	N=71	N=82	N=2575
HCV Antibody			
Negative	26 (36.6)	36 (43.9)	2107 (81.8)
Positive	42 (59.2)	38 (46.3)	166 (6.5)
Missing	3 (4.2)	8 (9.8)	302 (11.7)
HBV Surface Antigen			
Negative	64 (90.1)	61 (74.4)	2002 (77.7)
Positive	2 (2.8)	7 (8.5)	95 (3.7)
Missing	5 (7.1)	14 (17.1)	478 (18.6)
Year of ART initiation			
1997-2007	47 (66.2)	56 (68.3)	1493 (58.0)
>2007	24 (33.8)	26 (31.7)	1082 (42.0)
CD4			
<200	21 (29.58)	22 (26.83)	542 (21.05)
200-500	18 (25.35)	27 (32.93)	1095 (42.52)
>500	11 (15.49)	16 (19.51)	472 (18.33)
Missing	21 (29.58)	17 (20.73)	466 (18.1)
Viral Load			
<400	6 (8.45)	6 (7.32)	291 (11.3)
≥400	45 (63.38)	59 (71.95)	1783 (69.24)
Missing	20 (28.17)	17 (20.73)	501 (19.46)

7


CD4 response to cART

8

Viral Load response to cART

.

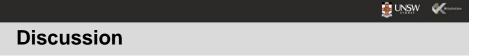
Lost to follow-up & mortality

	IDU	IDU+MSM	Other	Р
	N=71	N=82	N=2575	
Complete follow-up				
N (%)	31 (43.7)	25 (30.5)	1574 (61.1)	
Lost to follow-up				
N (%)	33 (46.5)	47 (57.3)	878 (34.1)	<.001
Per 100 person years (95% CI)	6.7 (4.8-9.4)	9.1 (6.8-12.1)	4.9 (4.6-5.2)	
Mortality				
N (%)	7 (9.9)	10 (12.2)	123 (4.8)	<.001
Per 100 person years (95% CI)	1.1 (0.6-2.1)	1.7 (0.9-2.9)	0.6 (0.5-0.7)	

Time to Viral Suppression

	Viral Su	ppression	Multivariate		
Predictor	No	Yes	Hazard (95% CI)	р	p (Overall)
	N=54	N=1833			
Exposure					
Others	47	1736	1		
IDU	1	44	0.77 (0.56-1.05)	0.101	0.042
IDU+MSM	6	53	0.74 (0.56-0.99)	0.039	
Site					
GP	19	604	1		
TH	4	427	1.40 (1.23-1.58)	< 0.001	< 0.001
SHC	31	802	1.06 (0.95-1.18)	0.317	
Region of Birth					
Aus+NZ	28	1059	1		
Asia	2	162	1.21 (1.02-1.44)	0.027	0.028
Other	8	261	0.9 (0.78-1.03)	0.136	
Missing	16	351	1.04 (0.92-1.18)	0.535	
HCV					
No	36	1487	1		
Yes	5	169	1.1 (0.93-1.3)	0.282	0.058
Missing	13	177	0.85 (0.72-1)	0.046	
ART Start					
1997-2007	30	1103	0.58 (0.53-0.65)	< 0.001	
>2007	24	730	1		

Other covariates analysed: site, sex, smoking, HBV, CD4



Time to Virological Failure

	Virologio	al Failure	Multivariate		
Predictor	No	Yes	Hazard (95% CI)	р	p (Overall)
	N=1211	N=622			
Exposure					
Others	1161	575	1		
IDU	23	21	1.51 (0.97-2.34)	0.067	0.023
IDU+MSM	27	26	1.54 (1.04-2.29)	0.033	
Age					
<30	183	120	1		
30-39	424	272	0.85 (0.69-1.06)	0.144	< 0.001
40-49	375	140	0.57 (0.45-0.73)	< 0.001	
≥50	229	90	0.64 (0.49-0.85)	0.002	
Ever Smoked					
No	222	65	1		
Yes	226	125	1.54 (1.14-2.08)	0.005	0.003
Missing	763	432	1.59 (1.22-2.06)	0.001	
CD4					
<200	315	184	0.59 (0.48-0.73)	< 0.001	< 0.001
200-500	686	268	0.54 (0.44-0.66)	< 0.001	
>500	171	152	1		
Missing	39	18	0.54 (0.33-0.88)	0.013	

Other covariates analysed : site, sex, region of birth, HCV, HBV

- IDU+MSM required a longer time to achieve virological suppression
- IDU+MSM have a higher risk of virological failure
- IDU showed similar but non-significant trends
- IDU and IDU+MSM have a higher LTFU rate

13

Limitations

- Lack of data on the duration of injecting drug use
- Mode of HIV exposure was used as a surrogate

Conclusion

- Significant differences between PWID and non-PWID
- Consideration of new treatment guidelines for PWID
- New strategies to maximise compliance
 - Opt for more tolerable and convenient cART for starting regimen
 - · Consideration of interactions with recreational/injecting drugs

15

Acknowledgements

Funding

The Australian HIV Observational Database is funded as part of the Asia Pacific HIV Observational Database, a program of amfAR, The Foundation for AIDS Research; and is supported in part by grant no. U01AI069907 from the U.S. National Institutes of Health's National Institute of Allergy and Infectious Diseases, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Cancer Institute, the National Institute of Mental Health, and the National Institute on Drug Abuse, and by unconditional grants from Merck Sharp & Dohme; Gilead Sciences; Bristol-Myers Squibb; Boehringer Ingelheim; Janssen-Cilag; ViiV Healthcare. The Kirby Institute is funded by the Australian Government Department of Health, and is affiliated with the Faculty of Medicine, UNSW Australia.

The content is solely the responsibility of the authors and the views expressed in this publication do not necessarily represent the position of the Australian Government or the official views of the U.S. National Institutes of Health or other funders.

Acknowledgements

AHOD collaborators

New South Wales: D Ellis, Coffs Harbour Medical Centre, Coffs Harbour; M Bloch, S Agrawal, T Vincent, Holdsworth House Medical Practice, Sydney; D Allen, Holden Street Clinic, Gosford; D Smith, A Rankin, Lismore Sexual Health & AIDS Services, Lismore; D Baker*, East Sydney Doctors, Surry Hills; DJ Templeton*, CC O'Connor, O Thackeray, RPA Sexual Health, Camperdown; E Jackson, K McCallum, Blue Mountains Sexual Health and HIV Clinic, Katomba; N Ryder, G Sweeney, Clinic 468, HNE Sexual Health, Tamworth; D Cooper, A Carr, K Macrae, K Hesse, St Vincent's Hospital, Darlinghurst; R Finlayson, S Gupta, Taylor Square Private Clinic, Darlinghurst; J Langton-Lockton, J Shakeshaft, Nepean Sexual Health and HIV Clinic, Penrith; K Brown, S Idle, N Arvela, Illawarra Sexual Health Service, Warrawong; R Varma, H Lu, Sydney Sexual Health Centre, Sydney; D Couldwell, S Eswarappa, Western Sydney Sexual Health Clinic; DE Smith*, V Furner, D Smith, G Cabrera, Albion Street Centre; S Fernando, Clinic 16 – Royal North Shore Hospital; A Cogle*, National Association of People living with HIV/AIDS; C Lawrence*, National Aboriginal Community Controlled Health Organisation; B Mulhall*, Department of Public Health and Community Medicine, University of Sydney; M Boyd*, University of Adelaide; M Law*, K Petoumenos*, R Puhr*, R Huang*, A Han*, The Kirby Institute, University of NSW. Northern Territory: M Gunathilake, R Payne, Communicable Disease Centre, Darwin.

Queensland: M O'Sullivan, A Croydon, Gold Coast Sexual Health Clinic, Miami; D Russell, C Cashman, C Roberts, Cairns Sexual Health Service, Cairns; D Sowden, K Taing, P Marshall, Clinic 87, Sunshine Coast-Wide Bay Health Service District, Nambour; D Orth, D Youds, Gladstone Road Medical Centre, Highgate Hill; D Rowling, N Latch, E Warzywoda, Sexual Health and HIV Service in Metro North, Brisbane; B Dickson*, CaraData.

South Australia: W Donohue, O'Brien Street General Practice, Adelaide.

Victoria: R Moore, S Edwards, S Boyd, Northside Clinic, North Fitzroy; NJ Roth*, H Lau, Prahran Market Clinic, South Yarra; T Read, J Silvers*, W Zeng, Melbourne Sexual Health Centre, Melbourne; J Hoy*, K Watson*, M Bryant, S Price, The Alfred Hospital, Melbourne; I Woolley, M Giles*, T Korman, J Williams*, Monash Medical Centre, Clayton.

Western Australia: D Nolan, A Allen, G Guelfi. Department of Clinical Immunology, Royal Perth Hospital, Perth.

New Zealand: G Mills, C Wharry, Waikato District Hospital Hamilton; N Raymond, K Bargh, Wellington Hospital, Wellington.

17

References

- Mathers, Bradley M., et al. "Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review." The Lancet 372.9651 (2008): 1733-1745.
- Murray, M., et al. "The effect of injecting drug use history on disease progression and death among HIV-positive individuals initiating combination antiretroviral therapy: collaborative cohort analysis." HIV medicine 13.2 (2012): 89-97.
- Wolfe, Daniel, M. Patrizia Carrieri, and Donald Shepard. "Treatment and care for injecting drug users with HIV infection: a review of barriers and ways forward." The Lancet 376.9738 (2010): 255, 366
- Abdul-Quader, Abu S., et al. "Effectiveness of structural-level needle/syringe programs to reduce HCV and HIV infection among people who inject drugs: a systematic review." AIDS and Behavior 17.9 (2013): 2878-2892.
- Petoumenos, K., et al. "Rates of combination antiretroviral treatment change in Australia, 1997-2000." HIV medicine 3.1 (2002): 28-36.