

Diagnostic testing strategies to enhance diagnosis and treatment of hepatitis C virus infection in Australia: a model-based cost-effectiveness analysis

Quinglu Cheng¹, Annabelle Stevens¹, Evan Cunningham¹, Richard Gray¹, Joyce Wu¹, Gregory Dore¹, Amy Kwon¹, Andrew Lloyd¹, Susan Matthews², Marianne Martinello¹, Alisa Pedrana³, Yumi Sheehan¹, Philip Cunningham^{1,4,5}, Mitchell Starr⁴, Behzad Hajarizadeh¹, Virginia Wiseman^{1,6}, Jason Grebely^{1*}, Sophy Shih^{1*} *contributed equally

¹The Kirby Institute, University of New South Wales, Sydney, Australia, ²Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia, ³Centre for Population Health, Burnet Institute, Melbourne, Victoria, Australia, ⁴St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia, ⁵NSW State Reference Laboratory for HIV, St Vincent's Hospital, Sydney, Australia, ⁶Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK.

Background: Understanding the optimal testing interventions to enhance timely treatment of HCV infection is critical to support elimination. This study evaluated the cost-effectiveness of HCV testing strategies compared to laboratory-based testing in standard-of-care.

Methods: Cost-effectiveness analyses were undertaken from the perspective of Australian Governments as funders by modelling testing strategies compared to standard-of-care in community settings in Australia. Study settings included drug treatment clinics, needle/syringe programs, homelessness settings, and community corrections. Data on HCV prevalence and treatment initiation were from the Australian Hepatitis C Point-of-Care Testing Program, NSW Dried-Blood-Spot Program, and the published literature. Testing strategies included: a) laboratory-based antibody testing with reflex HCV RNA testing; b) point-of-care antibody testing with reflex point-of-care HCV RNA testing; c) point-of-care antibody testing with laboratory-based reflex HCV RNA testing; d) dried-blood-spot collection with HCV RNA testing; e) point-of-care HCV antibody testing with reflex dried-blood-spot collection and HCV RNA testing; f) point-of-care HCV RNA testing.

Findings: The average costs per HCV treatment initiation for standard of care was \$1,721 for community corrections, \$1,958 for needle/syringe programs, \$2,283 in drug treatment clinics, and \$2,643 for homelessness services (Table 1). The testing strategies more cost-effective than standard of care across all settings were point-of-care HCV antibody testing with reflex point-of-care HCV RNA testing (\$1,324-\$1,822), point-of-care antibody testing with laboratory-based reflex HCV RNA testing (\$1,448-\$2,006), laboratory-based antibody testing with reflex HCV RNA testing (\$1,654-\$2,411), and point-of-care HCV antibody testing with reflex dried-blood-spot collection and HCV RNA testing (\$1,655-\$2,306).

Interpretation: Reflex testing strategies combining point-of-care, dried-blood spot, and laboratory testing are more cost-effective than standard of care for populations at risk of HCV. Testing strategies combining different testing interventions incorporating reflex testing are likely to be cost-effective, with the choice of testing strategy dependent on the specific setting.

Table 1. Average cost per treatment initiation for different HCV testing strategies across different community-based settings

Testing strategy	Antibody	RNA	Drug treatment	NSP	Homelessness	Community corrections
	Venepuncture	Venepuncture				
Standard of Care	Venepuncture	Venepuncture	\$2,283	\$1,958	\$2,643	\$1,721
Point-of-care antibody testing with reflex point-of-care HCV RNA testing	Point-of-care	Point-of-care	\$1,822	\$1,468	\$1,798	\$1,324
Point-of-care antibody testing with laboratory-based reflex HCV RNA testing	Point-of-care	Venepuncture	\$1,968	\$1,606	\$2,006	\$1,448
Laboratory-based antibody testing with reflex HCV RNA testing	Venepuncture	Reflex	\$2,148	\$1,839	\$2,411	\$1,654
Point-of-care HCV antibody testing with reflex dried-blood-spot collection and HCV RNA testing	Point-of-care	DBS	\$2,306	\$1,846	\$2,302	\$1,655
Point-of-care HCV RNA testing	NA	Point-of-care	\$2,676	\$2,652	\$3,861	\$2,426
Dried-blood-spot collection with HCV RNA testing	NA	DBS	\$3,416	\$3,384	\$4,981	\$3,087

Disclosure of Interest Statement: JG has received research grants, speaker fees, and participated on advisory boards for AbbVie, Cepheid, Gilead Science and Merck. GD has received research grants from Abbvie and Gilead Sciences. All other authors have nothing to declare.