

Prevalence of HIV indicator conditions in people with late diagnosis of HIV 25 years on:

Are we still missing opportunities for earlier care?

E. Spear¹, N. Virabhak², K. Cisera¹, D. Lin³, S. Garner^{1, 4},
J. Lau^{1, 2, 5}, T. Korman^{1, 2}, I. Woolley^{1, 2, 5}

¹Monash Health, Infectious Diseases, Melbourne, Australia,

²Monash University, School of Clinical Sciences, Melbourne, Australia,

³Burnet Institute, Melbourne, Australia,

⁴Austin Health, Department of Microbiology, Melbourne, Australia,

⁵Alfred Health, Department of Infectious Diseases, Melbourne, Australia

Disclosures

- *Nil personal disclosures*
- *JSYL receives honoraria for participation in Advisory Boards and Consultancy roles for ViiV Healthcare and Gilead Sciences, and an investigator-initiated research grant from Merck, Sharp and Dohme which is unrelated to this project.*
- *IW has worked as an investigator on commercial and investigator-initiated studies with funding to institutions from Gilead, ViiV, MAS, Moderna and CSL. IW has worked on advisory boards for ViiV and Gilead. IW has received educational support from Gilead, ViiV, MSD and Pfizer.*

Background – Late Diagnosis HIV

- Defined as CD4 count <350 cells/ μ L at first test
- 37% new HIV diagnosed late in Australia in 2023

Year of first ever HIV diagnosis	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Characteristic										
Total cases^a	1,079	1,029	1,006	962	840	895	626	541	553	722
Diagnosed late	277	263	260	285	269	276	225	225	215	247
Late HIV diagnosis, %^c	27.3%	27.7%	29.4%	32.5%	35.8%	35.8%	41.5%	47.5%	43.7%	37.0%

³ Kirby Institute, 2024

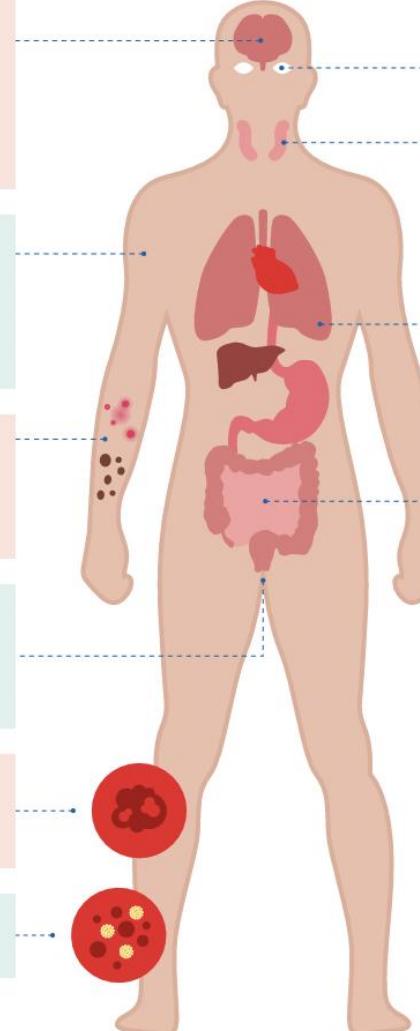
Background – Indicator Based Testing

WHO recommends reflexive, provider-initiated testing in conditions that may indicate presence of HIV⁴:

- AIDS-defining
- Linked to an undiagnosed HIV prevalence $> 0.1\%$
- Where undetected HIV could result in serious negative outcomes e.g. pregnancy, immunosuppression

⁴ World Health Organisation, 2007

Neurology: primary cerebral lymphoma, toxoplasmosis, cryptococcal meningitis, progressive multifocal leukoencephalopathy (PML), aseptic meningitis/encephalitis, Guillain-Barre syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), cerebral abscess, transverse myelitis, peripheral neuropathy, dementia, leucoencephalopathy


Any AIDS-defining Illness: oesophageal candidiasis, Kaposi's Sarcoma, pneumocystitis jiroveci pneumonia, histoplasmosis, cryptosporidiosis, toxoplasmosis, cryptococcal meningitis, cytomegalovirus (CMV), mycobacterium avium complex, non-Hodgkin lymphoma

Skin: Kaposi's Sarcoma, severe or recalcitrant seborrhoeic dermatitis or psoriasis, extensive warts or molluscum contagiosum, multidermatomal or recurrent varicella zoster, severe folliculitis

Infections: any STI (including syphilis, hepatitis B & C, chlamydia, gonorrhoea), refractory fungal infections, oral or oesophageal candidiasis, herpes varicella if multidermatomal or recurrent, toxoplasmosis

Malignancies: Hodgkin lymphoma, cervical, vaginal or anal intraepithelial neoplasia, Castleman disease and head & neck cancers

Blood disorders: unexplained thrombocytopenia, lymphopenia or neutropenia >4 weeks

Eyes: CMV retinitis, unexplained retinopathy or infective retinal disease (HSV & toxoplasma), syphilitic eye conditions

Glandular fever type illness (could be HIV seroconversion): pharyngitis, malaise, fever, lymphadenopathy, headache, maculopapular rash

Persistent generalized lymphadenopathy

Respiratory conditions: tuberculosis, recurrent bacterial pneumonia, aspergillosis, pneumocystitis jiroveci pneumonia

Constitutional symptoms without an obvious cause: pyrexia of unknown origin, unexplained weight loss, diarrhoea, myalgia, mononucleosis-like syndrome

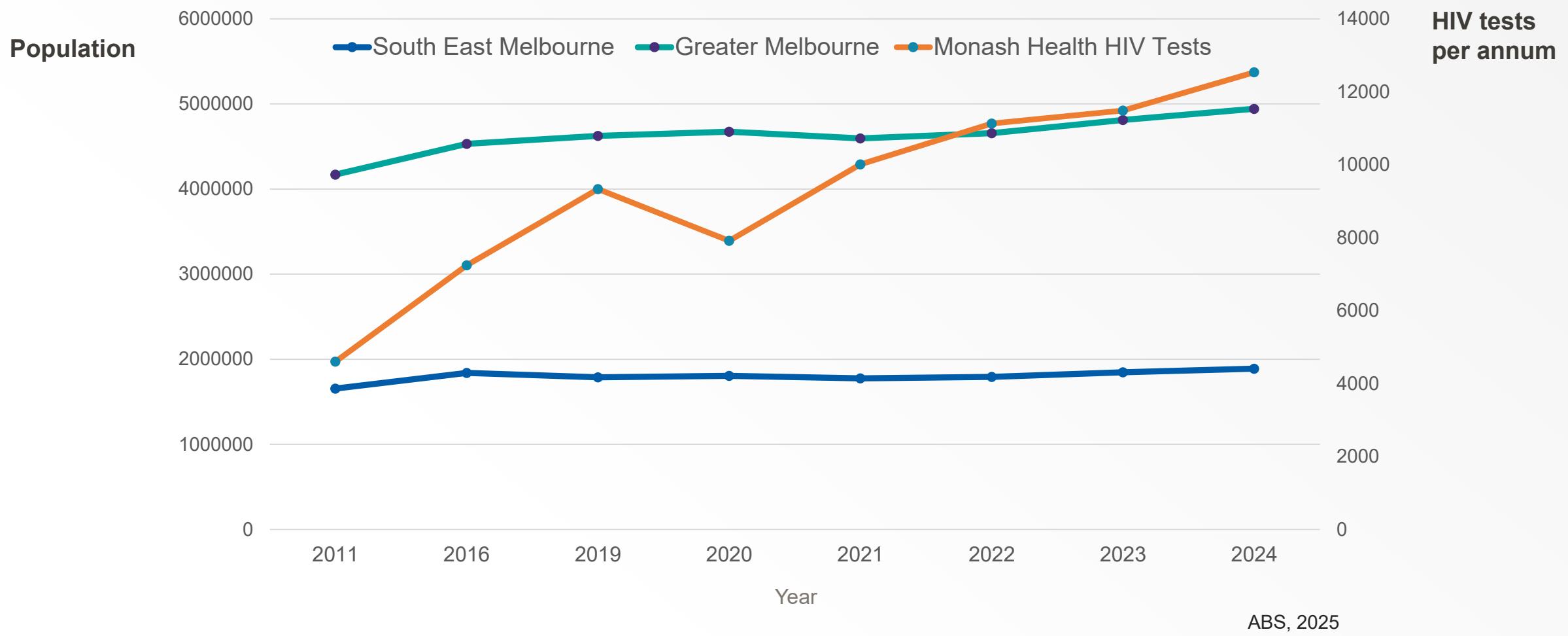
REFERENCES

- Kirby Institute. HIV, viral hepatitis and sexually transmissible infections in Australia: annual surveillance report 2018. Sydney: Kirby Institute, UNSW Sydney, 2018.
- HIV Testing Policy (2020). ASHM. Available at: <http://testingportal.ashm.org.au/national-hiv-testing-policy/>
- Decision Making in HIV tool. ASHM 2021. Published August 2021. Available at: <https://www.ashm.org.au/resources/HIV-Resources-list/>
- HIV Indicator Conditions: Guidance for Implementing HIV testing in Adults in Health Care Settings. From: HIV in Europe, Working Together For Optimal Testing and Earlier Care. Available at: www.hiveurope.eu
- Bell, C. Waddell, R. Chynoweth, N. Consider HIV: Testing for HIV and HIV indicator diseases. Australian Family Physician Vol. 42, no.8, Aug 2013.
- Murray, D. Murray, K. HIV Testing Procedure. NSW Government: Health South Eastern Sydney Local Health District. Feb 2014.
- UK National Guidelines for HIV Testing 2008. British HIV Association. September 2008. Available at: <http://www.bhiva.org/HIV-testing-guidelines.aspx>

> [QJM. 2019 Jan 1;112\(1\):17-21. doi: 10.1093/qjmed/hcy223.](#)

Prevalence of HIV indicator conditions in late presenting patients with HIV: a missed opportunity for diagnosis?

Y D Lin ¹, S E Garner ^{1 2}, J S Y Lau ¹, T M Korman ^{1 3}, I J Woolley ^{1 3}


Affiliations + expand

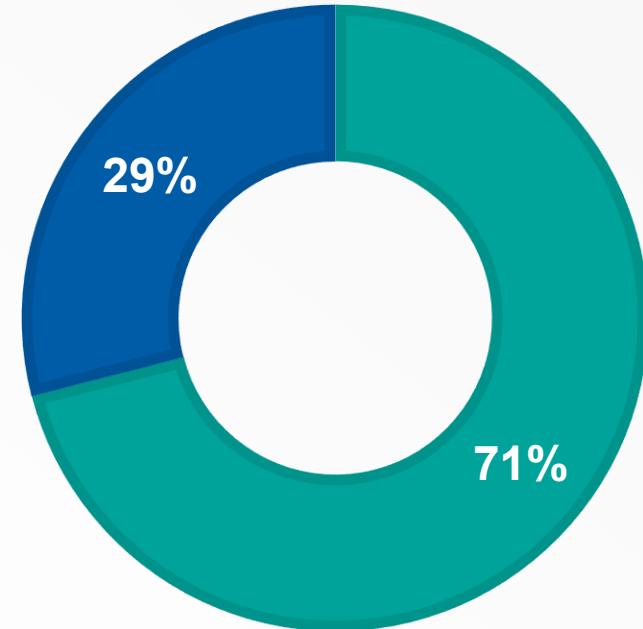
PMID: 30295832 DOI: [10.1093/qjmed/hcy223](#)

⁶Lin et al, QJM, 2019

Monash HIV testing 2011-2024, compared to ABS population data

Study Aims – Are we *still* missing opportunities for earlier care?

- This study aimed to evaluate progress in provider-initiated, indicator-based testing over the last 10 years at Monash Health
- Analyse prevalence of indicator conditions in people living with HIV
 - In those with CD4 count <350 cells/ μ L at diagnosis, was there an opportunity for earlier diagnosis?
- Compare data from 2000-2014 study to recent results 2015-2025

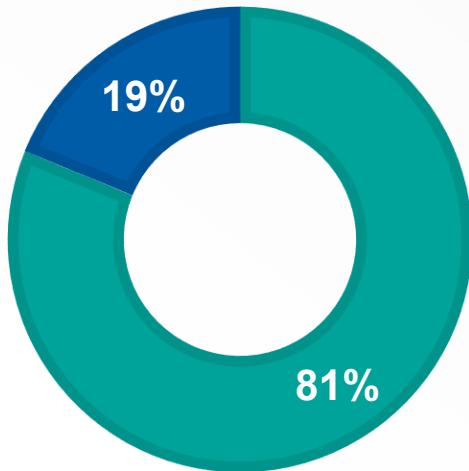

Method

- Retrospective cohort study: 1st January 2015 – 1st January 2025
 - Study group: Individuals with late diagnosis HIV (defined by CD4<350cells/ μ L)
 - Control: Individuals with CD4 \geq 350 at first presentation
- European AIDS Clinical Society guidelines used to identify indicator conditions in electronic health records
 - “Missed opportunity” defined as \geq 3 months
- Outcomes: Demographics, diagnostic setting and presence of indicator conditions.
- Statistical analysis: Chi-squared testing and two-proportion z-tests.

Results

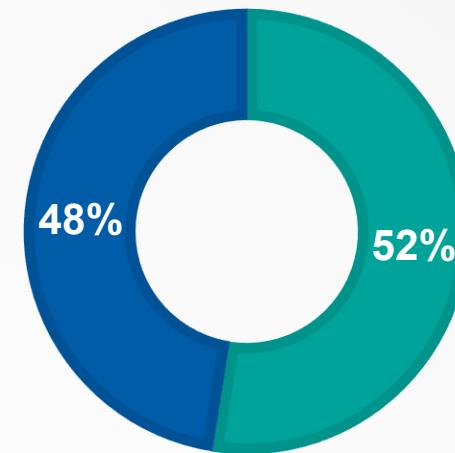
HIV Diagnoses Monash Health 2000-2025

■ Total new, n = 676 ■ New dx CD4 <350cells/ μ L, n = 196


New cases per annum (mean) = 27

Results

HIV Diagnoses Monash Health 2000-2025


2000-2015

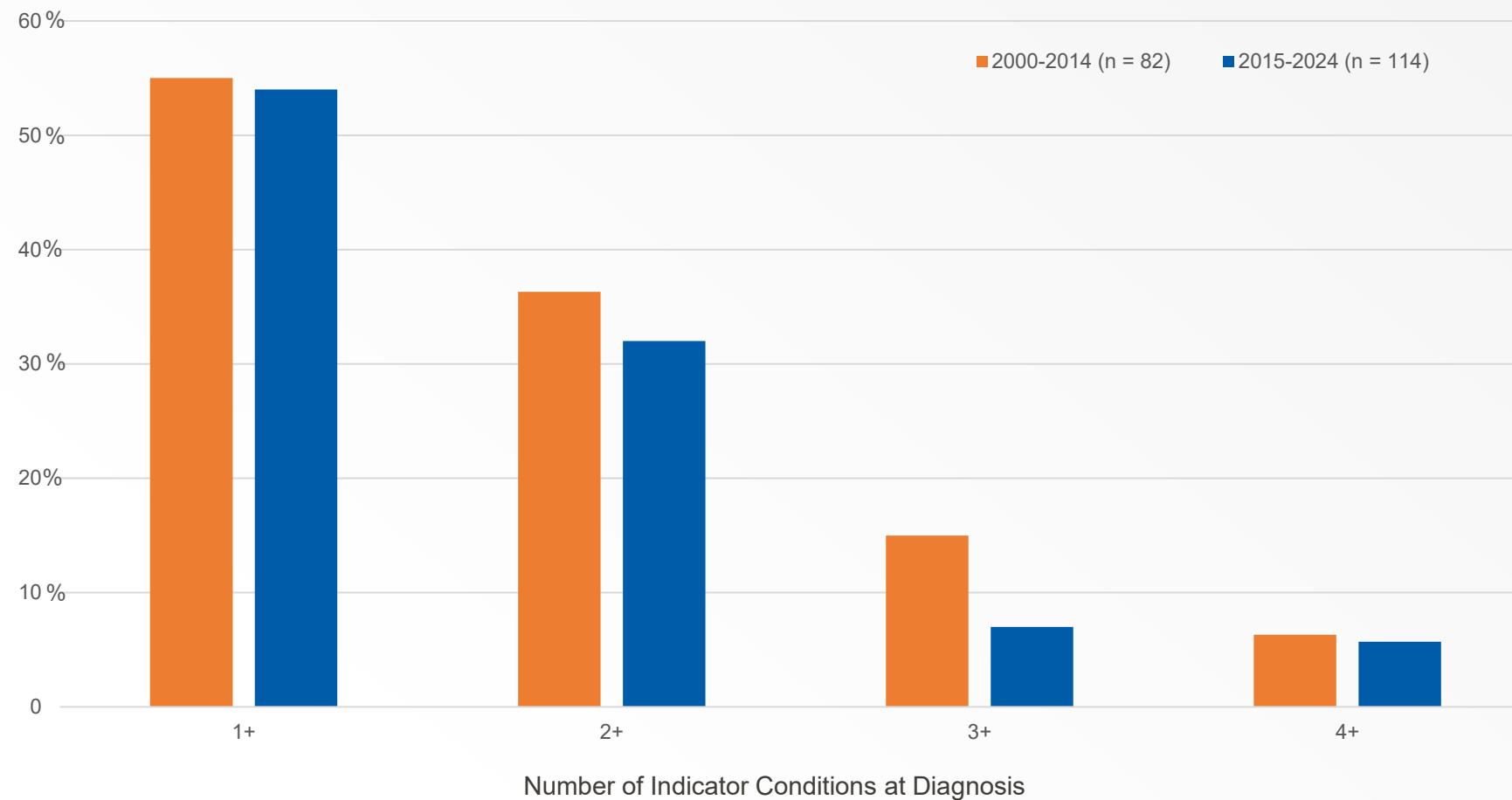
■ total, n = 436 ■ CD4 <350cells/µL, n = 82

Mean per annum = 29

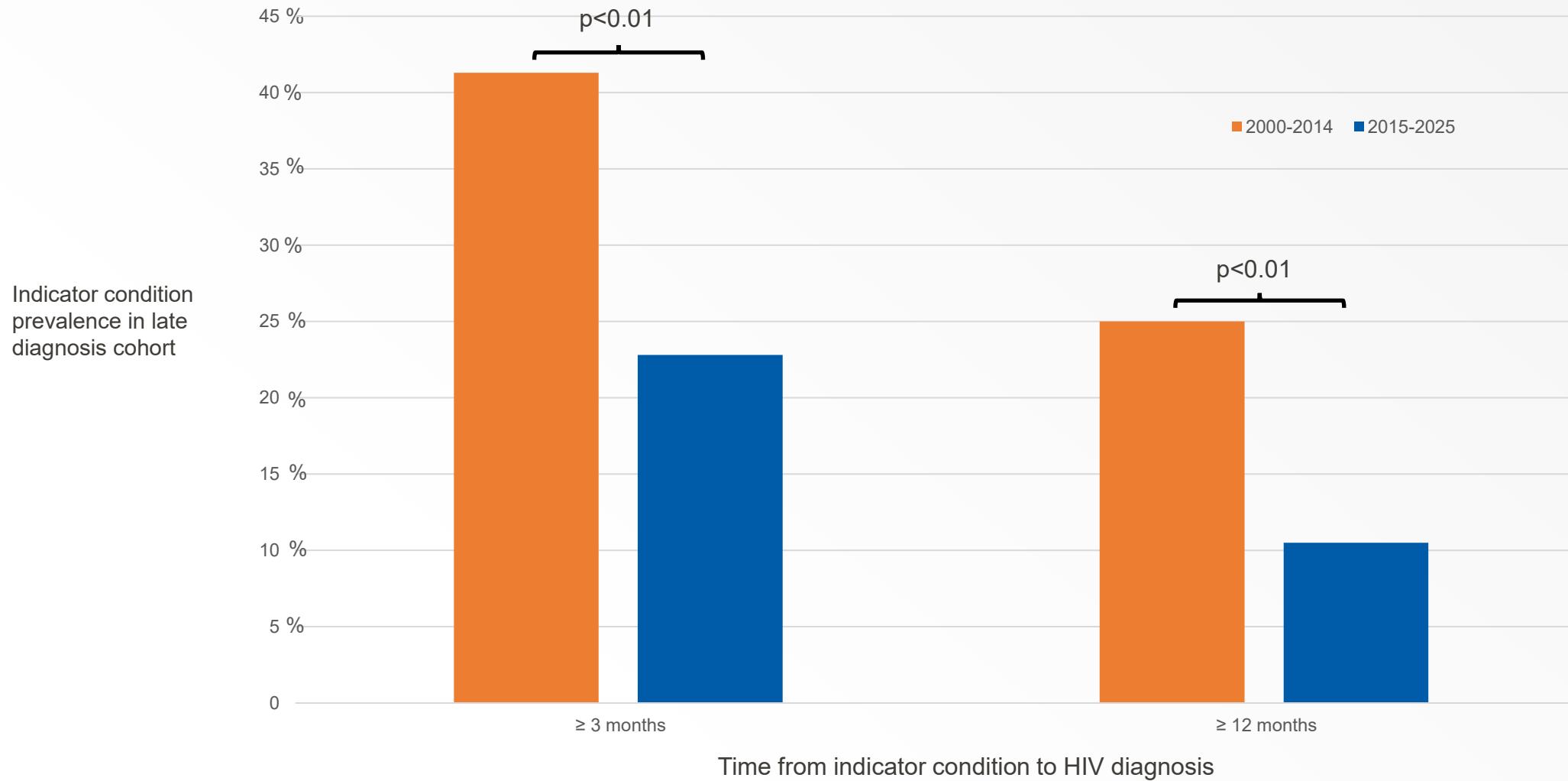
2015-2025

■ total, n = 240 ■ CD4 <350cells/µL, n = 114

Mean per annum = 24



Results: Demographics 2000-2025


Demographics; Late Diagnosis			
	2000-2014	2015-2025	p value
Age (mean, years)	45	41.9	
Sex			0.096
Male	68 (83%)	83 (73%)	
Female	14 (17%)	31 (27%)	
Born Overseas	50 (61%)	83 (73%)	0.08
Total	82 (19%)	114 (48%)	p<0.005

Prevalence of indicator conditions in late diagnosis cohort 2000 - 2025

Proportion of individuals diagnosed late, who had an opportunity for earlier diagnosis

Results: 2015-2025

HIVIC	Individuals with indicator conditions diagnosed prior to HIV diagnosis		
	0-3 months	3-12 months	12 months or longer
Unexplained weight loss	25	15	6
Hep B	16	0	0
STI	15	3	0
Candidiasis	15	7	3
HSV	9	2	2
Community Acquired Pneumonia	7	4	2
Unexplained lymphadenopathy	6	3	1
Unexplained leukocytopenia/ thrombocytopenia >4 weeks	4	1	1
Unexplained diarrhoea >4 weeks	3	2	1
Pregnancy	2	0	0
Cervical dysplasia	2	1	1
Total	104	38	17

Discussion: Limitations

- Retrospective, single-centre design
- Causality cannot be inferred
- Analysis limited to cohort CD4 <350 cells/ μ L
- Reliance on medical records that may be incomplete / inaccurate
- Unmeasured confounders

Key Messages

- Proportion of late diagnosis remains unacceptably high
- Within this cohort, clinician testing behaviour appears to have improved
- Next steps:
 - Continue to normalise HIV testing amongst colleagues, until it is routine
 - Integration of testing into guidelines is effective (pregnancy, hepatitis)
 - Scope for improvement: weight loss

References

1. Rutstein SE, Ananworanich J, Fidler S, Johnson C, Sanders EJ, Sued O, Saez-Cirion A, Pilcher CD, Fraser C, Cohen MS, Vitoria M, Doherty M, Tucker JD. "Clinical and public health implications of acute and early HIV detection and treatment: a scoping review." *Journal of the International AIDS Society*. 2017 Jun 28;20(1):21579. doi: 10.7448/IAS.20.1.21579. PMID: 28691435; PMCID: PMC5515019. <https://pubmed.ncbi.nlm.nih.gov/28691435/>
2. Elizabeth Crock. "Late presentation of new HIV diagnosis." *HIV Management Guidelines*. HIV Guidelines Australia. Accessed August 31, 2025. <https://hiv.guidelines.org.au/management/late-presentation-of-new-hiv-diagnosis/>
3. Kirby Institute. "HIV diagnoses trending down in Australia despite 2023 increase." UNSW Sydney. Published September 3, 2024. Accessed August 31, 2025. <https://www.kirby.unsw.edu.au/news/hiv-diagnoses-trending-down-australia-despite-2023-increase>.
4. World Health Organization & UNAIDS. (2007). Guidance on provider-initiated HIV testing and counselling in health facilities. Geneva: World Health Organization. Report No.: ISBN 978-92-4-159556-8.
5. ASHM Clinical Indicator Testing Tool: Could it be HIV? <https://ashm.org.au/resources/hiv-clinical-indicator-testing-tool/>
6. Lin YD, Garner SE, Lau JSY, Korman TM, Woolley IJ. Prevalence of HIV indicator conditions in late presenting patients with HIV: a missed opportunity for diagnosis? *QJM*. 2019 Jan 1;112(1):17-21. doi: 10.1093/qjmed/hcy223. PMID: 30295832. <https://pubmed.ncbi.nlm.nih.gov/30295832/>

Prevalence of HIV indicator conditions in people with late diagnosis of HIV 25 years on:

Are we still missing opportunities for earlier care?

ella.spear@monashhealth.org

