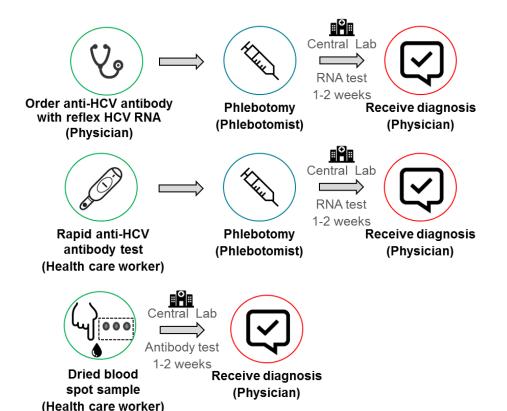
Optimizing point-of-care testing strategies for diagnosis and treatment of hepatitis C virus infection in Australia: A model-based costeffectiveness analysis

POC23 Conference - 15 March 2023

Dr Sophy Shih Surveillance and Evaluation Research Program The Kirby Institute, UNSW



HCV Elimination Goals

- World Health Organisation (WHO) goal to eliminate hepatitis C virus (HCV) infection by 2030
- Direct-acting antiviral (DAA) HCV therapies >95% cure rates led to the HCV elimination goal possible
- Globally, low diagnosis (23%) and treatment (5%) of people diagnosed
- Hampered by current diagnostic pathways requiring multiple visits and resulting in loss to follow-up in key populations

What options do we have to improve HCV testing?

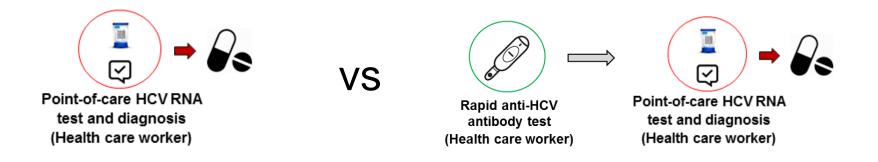
Point-of-care HCV RNA test and diagnosis (Health care worker) HCV antibody testing with reflex RNA testing

Rapid HCV antibody testing

Dried blood spot testing

Source: Grebely J et al. Expert Review of Molecular Diagnostics 2017

POC HCV antibody (exposure) & RNA (active infection)


- Real-world performance for HCV RNA quantification of active infection
 - Xpert® HCV Viral Load Fingerstick Sensitivity – 100%, Specificity 100%³

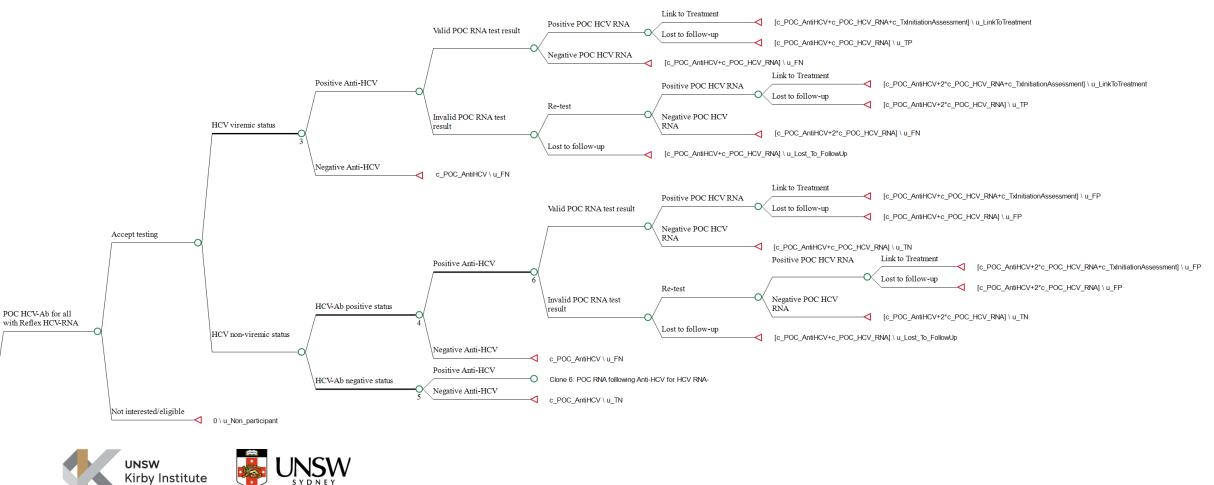
McHugh J Clin Micro 2017, Grebely Lancet Gastro Hep 2017, Lamoury Journal of Infectious Diseases 2018

Rationale and Aim

- POC RNA testing more expensive and thus its costeffectiveness to be determined
- Aim to evaluate the cost-effectiveness of different testing strategies in relation to HCV prevalence to optimize testing and treatment outcomes to inform policy/practice

Economic analysis framework key elements

- <u>Study perspective</u>: Australian Governments (Commonwealth and States)
- <u>Study population</u>: people at risk of HCV infection in key service settings (e.g. prison, NSP, drug treatment clinic)
- Outcomes modelled:
 - 1. Detection of active infection
 - 2. Treatment initiation in the active infection cases
- <u>Costs assessed:</u>
 - 1. Based on real program financial information
 - 2. Time and motion pilot data collected from testing sites to estimate labour cost
 - 3. Costs estimated at three levels


Diagnostic strategies

- 1. POC HCV RNA testing for everyone
- 2. POC antibody screening for everyone with reflex POC HCV RNA testing among HCV antibody positive people
- 3. POC antibody screening for treatment-naïve people with reflex POC HCV RNA testing and immediate POC HCV RNA testing for treatment-experienced individuals
- 4. Standard of care with on-site sample collection: HCV antibody and HCV RNA testing through standard laboratory mechanisms (with on-site blood collection by venepuncture).

Decision Analytical Models

Point of Care HCV Ab with reflex POC HCV RNA testing

Model key parameters - Epi

Parameter	Setting			Source	
	Prison	NSP	Drug Treatment		
Proportion of people tested	1	1	1	Assumption	
HCV Ab prevalence	0.37	0.61	0.69	SToP-C, ETHOS Engage	
HCV RNA+ in HCV-Ab+	0.32	0.30	0.20	SToP-C, ETHOS Engage	
HCV RNA prevalence	0.12	0.18	0.14	SToP-C, ETHOS Engage	
HCV Ab (+) in HCV RNA (-)	0.28	0.53	0.64	SToP-C, ETHOS Engage	
Self-report history of HCV Treatment	0.10	0.35	0.40	SToP-C, ETHOS Engage	
Self-report history of HCV Treatment/Diagnosis in RNA (+)	0.14	0.18	0.26	SToP-C, ETHOS Engage	
Self-report history of HCV Treatment/Diagnosis in RNA (-)	0.09	0.39	0.43	SToP-C, ETHOS Engage	
Treatment-Naïve in HCV Ab (+)	0.74	0.43	0.42	SToP-C, ETHOS Engage	
Treatment-Naïve in HCV RNA (+)	0.86	0.83	0.74	SToP-C, ETHOS Engage	
HCV Ab (+) and RNA (-) in Treatment-Naïve	0.17	0.23	0.38	SToP-C, ETHOS Engage	

Model key parameters - Operation

Parameter	Setting		ing	Source	
	Prison	NSP	Drug Treatment		
POC RNA invalid test due to operation error	0.03	0.03	0.03	Assumption	
Sensitivity of test					
- POC anti-HCV	0.993	0.993	0.993	Bioline HCV, Abbott	
- POC HCV RNA	1.00	1.00	1.00	Grebely et al 2017, Lamoury et al 2018	
- Laboratory anti-HCV	1.00	1.00	1.00		
- Laboratory HCV RNA	1.00	1.00	1.00		
Specificity of test					
- POC anti-HCV	0.981	0.981	0.981	Bioline HCV, Abbott	
- POC HCV RNA	1.00	1.00	1.00	Grebely et al 2017, Lamoury et al 2018	
- Laboratory anti-HCV	1.00	1.00	1.00		
- Laboratory HCV RNA	1.00	1.00	1.00		
Lost to follow-up					
- POC RNA re-test	0.25	0.25	0.25	Grebely et al 2014	
- SOC RNA test	0.31	0.31	0.31	Yousafzai, MT. et al 2021	
Linkage to treatment					
- POC	0.93	0.81	0.81	Yousafzai, MT. et al 2021	
- SOC	0.60	0.59	0.59	Yousafzai, MT. et al 2021	

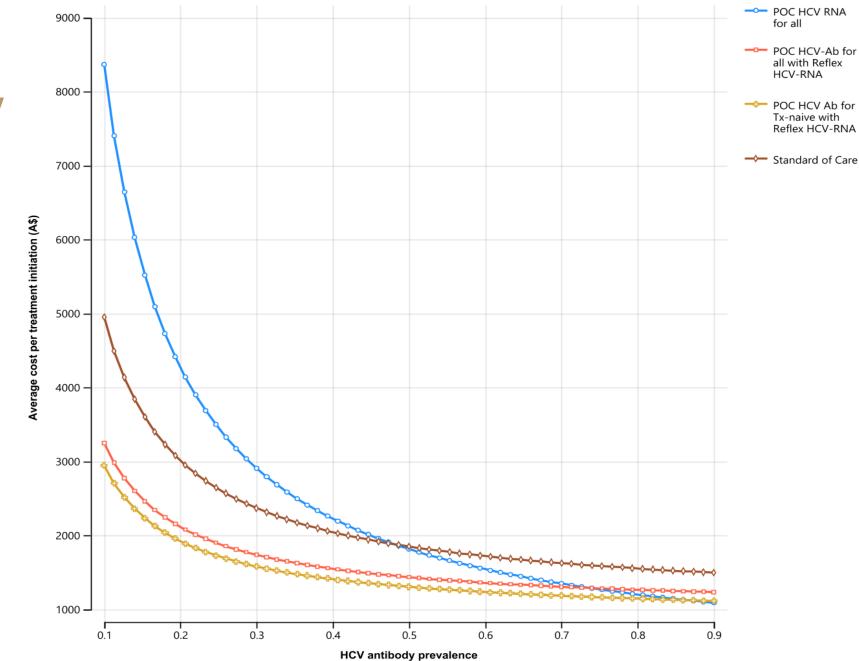
Model key parameters – costs (base case)

Test		Mean	Source		
Point-of-care RNA test	Testing Variable Cost	Direct Cost (including variable and fixed costs)	Total Cost	Cepheid National POCT Program TEMPO Study	
	\$96	\$129	\$153		
Point-of-care combined HCV Ab and RNA tests	Anti-HCV only	Anti-HCV Reflex RNA	RNA only (1)	Grebely et al 2021	
	\$34	\$163	\$129		
Standard of care laboratory HCV tests	Anti-HCV only	Anti-HCV & RNA	RNA only (1)	MBS 2021	
	\$38	\$153	\$115		
Treatment initiation assessment		\$180	Hajarizadeh, et al. 2021 MBS 2021		

(1) Tx-experienced

Base case cost-effectiveness – Tx Initiation

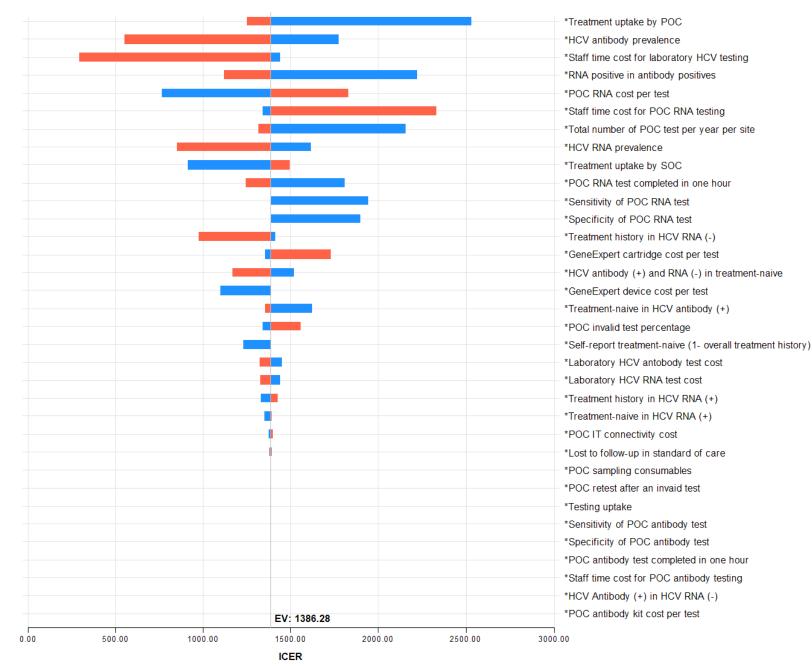
Strategy	Average cost per person tested	Incremental Cost	Effectiveness (HCV case)	Incremental Effectiveness	ICER	Average cost per HCV case treated	Number to test for one HCV case
Prison Setting							
Standard of Care	\$76		0.0531			\$1426	18.8
POC HCV RNA for all	\$152	\$76	0.1078	0.0547	\$1386	\$1406	9.3
POC HCV-Ab for all with Reflex HCV-RNA	\$123	\$27	0.1071	0.0539	\$500	\$960	9.3
POC HCV Ab for Tx-naive with Reflex HCV-RNA	\$99	\$23	0.1072	0.0541	\$424	\$921	9.3
NSP Setting							
Standard of Care	\$100		0.0802			1248	12.5
POC HCV RNA for all	\$159	\$59	0.1468	0.0666	\$879	1080	6.8
POC HCV-Ab for all with Reflex HCV-RNA	\$141	\$41	0.1458	0.0656	\$630	970	6.9
POC HCV Ab for Tx-naive with Reflex HCV-RNA	\$130	\$30	0.1460	0.0658	\$455	890	6.9
Drug Treatment Setting							
Standard of Care	\$103		0.0633			\$1632	15.8
POC HCV RNA for all	\$152	\$49	0.1118	0.0486	\$1010	\$1362	8.9
POC HCV-Ab for all with Reflex HCV-RNA	\$146	\$42	0.1111	0.0478	\$884	\$1310	9.0
POC HCV Ab for Tx-naive with Reflex HCV-RNA	\$132	\$29	0.1113	0.0480	\$605	\$1189	9.0



C: Drug Treatment Clinics

Average cost / person treated by Ab prevalence

49%, 74%, 86%



Tornado Diagram: ICER POC HCV RNA for all vs. Standard of Care

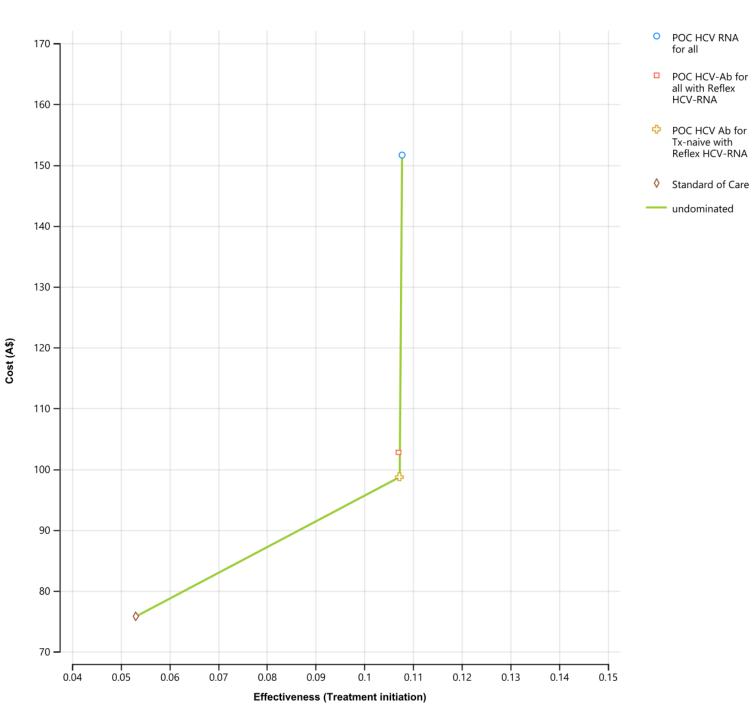
One-way Sensitivity Analysis - Prison

POC HCV RNA testing for all

B: Needle Syringe Program

Average cost / person treated by POC Tx uptake

54%, 60%, 68%


Threshold of POC Tx uptake

Best Testing strategy		nt uptake ase case	Threshold of POC T	c uptake for equal average cost per case treated to SOC		
Setting	SOC	POC	POC HCV-Ab for treatment-naïve with reflex POC RNA	POC HCV-Ab for all with reflex POC RNA	POC HCV RNA for all	
Prison	60%	93%	55%	58%	91%	
NSP	59%	81%	54%	60%	68%	
Drug Treatment	59%	81%	57%	64%	67%	

Cost-effectiveness planes for the base case

A: Prison

Summary

- The average cost per treatment initiation is ~35% lower for point-ofcare testing strategies compared to standard of care. By average cost per treatment initiation:
 - Two-step POC testing (Ab reflex RNA) with consideration of treatment history is most cost-effective across all settings in HCV antibody prevalence <79% in prison, <86% in community.
 - In high HCV antibody prevalence populations/settings (>86%), a one-step point-of-care HCV RNA testing strategy is most effective
 - In low HCV antibody prevalence populations/settings (e.g. prison <35%, NSP<45%, DrugTx <49%), one-step point-of-care HCV RNA testing is the least cost-effective due to its high cost

Conclusions and Implications

- POC testing would perform better with modest improvement in treatment uptake by 9%~31%, where pilot shows significant increases (PIVOT 93% vs. 22%; TEMPO 81% vs. 27%).
- Future data from the National HCV Point-of-Care Testing Program across a range of real-world settings will further inform health economic analyses
- Long-term QALY is needed

Funding from CRE-POC for ID (RAPID Diagnostic Centre)

Acknowledgement:

Jason Grebely, Qinglu Cheng, Joanne Carson, Heather Valerio, Richard Gray, Evan Cunningham, Yumi Sheehan, Andrew Lloyd, Gregory Dore, Virginia Wiseman

&

PIVOT, ETHOS, SToP-C, and TEMPO investigators/contributors

