## The Clinical Role of *Mycoplasma genitalium* Reflections on an Emerging STI

#### 2019 Australasian Sexual Health Conference, Perth

#### 16 September 2019

#### David A. Lewis

Director, Western Sydney Sexual Health Centre Professor, Marie Bashir Institute for Infectious Diseases and Biosecurity & Faculty of Medicine and Health, University of Sydney









- **GSK**: External Advisory Support for Gepotidacin development for treatment of gonorrhoea (current)
- GARDP-Entasis: External Advisory Support for Zoliflodacin development treatment of gonorrhoea (2017-2019)
- SpeedX: ResistancePlus<sup>™</sup> MG assay research samples, video production

### Mycoplasma genitalium





- Small 580 kb genome = fastidious bacterium
- 140 kDa Mg surface adhesin (Mg Pa)
- Can grow intracellularly and extracellularly
- Difficult to culture *in vitro* impeded research
- Important role of molecular diagnostics:
  - enhanced our understanding of this pathogen's role
  - can now simultaneously detect the bacterium and its susceptibility to antibiotics

### Evidence to Support Sexual Transmission



Fransmission High concordance rate of *M. genitalium* infection among sexual partners

- Concordant *M. genitalium* multi-locus genotypes reported among 87% of co-infected sexual partners
- Increased prevalence in high risk groups for STIs
- Association with number of sex partners
- Estimates for chlamydial transmission from men to women per episode of vaginal coitus based on observational studies and range from 10% to 39.5%
- Transmission for *M. genitalium* likely to be lower based on lower bacterial loads

McGowin & Anderson-Smits, PLoS Pathogens 2011;7:e10013224; Ma *et al.*, BMC Microbiol. 2008;8:130; Horner & Martin, J. Infect. Dis. 2017;216(S2):S396–405

### **Population-based Survey Studies**

- Wave III, National Longitudinal Study of Adolescent Health, USA
  - Young men (n=1,218) and women (n=1,714) aged 18-27 yrs enrolled in 2001-2002
  - *M. genitalium* prevalence: 1.1% in men, 0.8% in women
  - Strongly associated with increasing numbers of sexual partners and black race
- Third National Survey of Sexual Attitudes and Lifestyles (NATSAL-3), UK
  - Probability sample survey (2010-2012)
  - Sexually experienced men and women between aged 16-44 (n=4,507, no gender split)
  - *M. genitalium* prevalence: 1.2% in men, 1.3% in women
  - Risk factors: black race, numbers of total & new sex partners, unsafe sexual practices
- Population-based survey, Aarhus County, Denmark
  - Survey undertaken in 1997-1998
  - Population: young adults (731 males, 921 females) aged 21-24 yrs
  - *M. genitalium* prevalence: 1.1% in men, 2.3% in women
  - Detection associated with increasing number of sexual partners

Manhart *et al.*, Am. J. Public Health 2007;97:1118–1125; Sonnenberg P *et al.*, Int. J. Epidemiol. 2015;44:1982–1994; Andersen B *et al.*, Sex. Transm. Infect. 2007;83:237–241

# Mycoplasma genitalium in Men

## Relative Importance of *M. genitalium* as a Cause of Urethritis

- Prevalence of *M. genitalium* cases varies geographically and by socio-economic status
- *Neisseria gonorrhoeae* most common cause of urethritis in most developing regions of the world
- *Chlamydia trachomatis* most common pathogen associated with NGU
- Mycoplasma genitalium main organism associated with persistent NGU following first-line treatment



Lewis *et al.*, Unpublished surveillance data from six aetiological surveys among men attending primary health care clinics with urethral discharge

### **Survey Studies in MSM**

- MSM have higher rates of *M. genitalium*, *N. gonorrhoeae* and *C. trachomatis* infections than are observed in population-based surveys
  - Prevalence highest at ano-rectal sites for all three bacteria
  - Oro-pharyngeal *M. genitalium* uncommon

|                      | MSM attending six SOPVs,<br>Melbourne, 2001-2002<br>(N = 521, 24% response rate) |      |          |        | MSM attending Western Sydney<br>Sexual Health Centre, 2017<br>(N = 508, consecutive) |      |          |        |
|----------------------|----------------------------------------------------------------------------------|------|----------|--------|--------------------------------------------------------------------------------------|------|----------|--------|
| Site of<br>Infection | Overall                                                                          | Anal | Urethral | Throat | Overall                                                                              | Anal | Urethral | Throat |
| M. genitalium        | 2.1%                                                                             | 1.6% | 0.6%     | 0.0%   | 13.4%                                                                                | 4.7% | 8.9%     | 0.0%   |
| C.<br>trachomatis    | 8.1%                                                                             | 6.2% | 1.8%     | 0.6%   | 12.8%                                                                                | 9.1% | 4.1%     | 2.0%   |
| N.<br>gonorrhoeae    | 4.8%                                                                             | 2.2% | 0.2%     | 2.5%   | 12.2%                                                                                | 6.5% | 1.6%     | 8.5%   |

• *M. genitalium* is reportedly more prevalent in men with HIV infection

Bradshaw et al., Sex. Transm. Infect. 2009;85:432–435; Couldwell et al., Sex. Transm. Infect. 2018;94:406-410The University of SydneySoni S et al., Sex. Transm. Infect. 2010; 86:21–4Page 8

### M. genitalium and Non-Gonococcal Urethritis

TABLE 2. Fulfillment of criteria required to determine whether<br/>M. genitalium or C. trachomatis causes NGU<sup>a</sup>

|                                                            | Fulfillment of criterion for: |                |  |  |
|------------------------------------------------------------|-------------------------------|----------------|--|--|
| Criterion                                                  | M. genitalium                 | C. trachomatis |  |  |
| Detection significantly more often than                    |                               |                |  |  |
| in controls for:                                           |                               |                |  |  |
| Acute NGU                                                  | ++++                          | ++++           |  |  |
| Chronic NGU                                                | + + +                         | +              |  |  |
| Homosexual NGU                                             | +++                           | +++            |  |  |
| Larger no. of organisms than in controls                   | +++                           | ++             |  |  |
| Antibody titers and responses more often than in controls  | +                             | ++             |  |  |
| Effective microbiological and clinical response to therapy | ++++                          | ++++           |  |  |
| Reproduction of disease in inoculated subhuman primates    | ++++                          | +++            |  |  |
| Reproduction of disease in inoculated human volunteers     | ND                            | ND             |  |  |
| Wide geographic involvement                                | ++++                          | ++++           |  |  |
| Disease prevented by natural or exptl immunity             | ND                            | +              |  |  |

<sup>*a*</sup> ++++, excellent; +++, good; ++, moderate; +, poor; ND, not determined. The second to eighth criteria relate mainly to acute NGU.

- *M. genitalium* was first isolated from urethral samples of two men with NGU
- Strong + consistent associations with NGU
- Higher bacterial load in symptomatics
- Pro-inflammatory cytokines released during infection – biologically plausible
- Taylor-Robinson & Jensen reviewed literature and reported:
  - *M. genitalium* detected in 15%–25% of men with symptomatic NGU
  - *M. genitalium* detected in 5%–10% of those without disease
  - Association with NGU: OR 5.5; 95%Cl, 4.3–7.0

## Men - I

- Bissessor *et al.* reported 12% *M. genitalium* prevalence among 154 MSM with proctitis (c.f. *N. gonorrhoeae*, 25%; chlamydia, 19%; HSV, 18%)
- Rectal *M. genitalium* bacterial load was significantly higher in men with proctitis vs. asymptomatic men.
- We lack treatment effectiveness studies for *M. genitalium* proctitis

#### 2. EPIDIDYMO-ORCHITIS

- *M. genitalium* may be a cause of acute epididymitis in some patients however, still not proven and requires further study
- Ito *et al.* reported *M. genitalium* was detected in 8% of 56 cases of epididymitis in men <40 years old (c.f. *C. trachomatis* in 50%)

## Men - II

- Sparse evidence that *M. genitalium* is associated with chronic prostatitis
  - *M. genitalium* not detected by PCR in prostatic biopsy specimens from 50 patients with chronic abacterial prostatitis
  - *M. genitalium* detected by PCR in prostatic biopsy specimens from 5/135 (4%) men
  - *M. genitalium* detected in semen from 2/18 men with chronic abacterial inflammatory prostatitis, compared to 0/20 controls (non-significant)
  - Mo *et al.* evaluated 235 Chinese men with prostatitis and 152 asymptomatic STI clinic controls who underwent specimen collection procedures including prostate massage the *M. genitalium* PCR assay was positive in 10% men with clinical prostatitis and 3% of controls (p=0.005)

#### 4. BALANOPOSTHITIS

- *M. genitalium* associated with balanoposthitis in 114 men with acute NGU
- Further studies required

 Doble et al., Br. J. Urol. 1989;64:297–301; Krieger et al., J. Clin. Microbiol. 1996;34:3120–3128;

 Mandar et al., Scand. J. Urol. Nephrol. 2005;39:479–482; Mo et al., Sex. Health 2016;13:474-479;

 The University of Sydney

 Horner & Taylor-Robinson, Sex. Transm. Infect. 2011; 87:38–40

# Mycoplasma genitalium in Women

### **Vaginal Discharge**

- *M. genitalium* is not thought to cause vaginal discharge
  - positive vaginal swab NAATs likely reflect endocervical infections
  - no association with other organisms causing vaginitis (*T. vaginalis, Candida* spp.)
  - relationship with bacterial vaginosis (BV) inconsistent between studies

### **Female Urethritis**

- Most studies have been conducted in Scandinavia data lacking elsewhere
- Moi *et al.* reported a significant association between *M. genitalium* and microscopic urethritis in one large Scandinavian study <u>BUT</u> three other Scandinavian studies failed to show any significant associations
- Need to exclude patients with concomitant cervicitis as inflammation at other sites may cause urethral contamination and false positive diagnosis of urethritis

### **Mucopurulent Cervicitis**

- Characterised by clinical signs (mucopulent discharge, friability at the cervical os) or by elevated PMNLs in endocervical smears
- Research hampered by the lack of a generally-accepted case definition
- *M. genitalium* has been positively associated with microscopically-proven cervicitis but, only in some studies, with cervical discharge
- Controlling for concomitant chlamydial infection in several studies found significant associations between *M. genitalium* and cervicitis
- Lack of studies controlling for the effect of concomitant gonorrhoea
- The magnitude of the increased risk of cervicitis is comparable to that due to *C. trachomatis* and *N. gonorrhoeae*

### **Pelvic Inflammatory Disease**

- *M. genitalium* serologically linked to PID in 1984 and later detected by NAATs in both endometrial/fallopian tube samples from women with acute PID
- Several NAAT-based studies have found a +ve association between *M. genitalium* and clinically diagnosed PID in geographically diverse populations
- *M. genitalium* has been significantly associated with endometritis in a small number of studies where the endometrium was sampled
- Studies are hampered by the sub-optimal specificity of some of the clinical signs used to diagnose PID and the recognized lack of correlation with laparoscopic findings
- No clear trend observed when comparing studies that excluded co-infections with *C. trachomatis* or controlled for co-infections in multivariate analyses

### **Pregnancy Complications and Infertility**

- *M. genitalium* independently associated with pre-term birth in some studies and a recent meta-analysis
- Consistent strong correlations reported between serological evidence of *M. genitalium* infection and laparoscopically-confirmed tubal infertility
  - Association is maintained after excluding women with prior chlamydia
- Grzesko *et al.* reported NAAT detection of *M. genitalium* in endocervical samples was more frequent in infertile women vs. healthy fertile women
- Other studies has indicated that endocervical testing is not useful in predicting upper genital tract infection
- Experimental models (monkeys, mice, fallopian tube organ cultures) indicate *M. genitalium* can colonize upper genital tract leading to salpingitis and/or endometritis

## *Mycoplasma genitalium* Binds to & Damages





### rgan Cultures

Immunofluorescence demonstrates *Mycoplasma genitalium* binding



Uninfected control FTC



FTC showing cilia swellings due to *M. genitalium* 



Damaged cilia with *M. genitalium* attached to secretory cells (arrow)

Baczynska et al., Human Reprod. 2007;22:;968-979

### **Systematic Review and Meta-Analysis** *M. genitalium* and female reproductive tract disease

- Examined associations of *M. genitalium* and 5 reproductive tract syndromes
  - $\circ$  cervicitis
  - Pelvic inflammatory disease
  - preterm birth
  - o spontaneous abortion
  - o infertility
- Well-designed study
  - 2 independent reviewers screened/examined 1080 relevant studies
  - examined Forest plots and conducted random-effects meta-analysis to estimate prevalence
  - o between study heterogeneity examined with the I<sup>2</sup> statistic and meta-regression
  - publication bias assessed via funnel plots and Begg & Egger tests; rated methodology quality
- ~2-fold increased risks were demonstrated for all 5 conditions examined
- All pooled estimates were significant except for infertility

### Conclusions

- *M. genitalium* is an STI that presents many clinical challenges
- Causative role in NGU now clearly established
- Significant associations recognized with cervicitis, endometritis, pelvic inflammatory disease (PID), spontaneous abortion and pre-term labour
- Evidence of non-significant association with female infertility through a recent meta-analysis
- Role in proctitis, prostatitis, epididymo-orchitis balanoposthitis remains unclear
- Further clinical research is required to move the field forward .... !!!