

Diagnostics and point-of-care technologies to enhance HCV testing and treatment

Pr Karine Lacombe, INSERM UMR-S1136, IPLESP Sorbonne Université, Paris SMIT St Antoine, AP-HP

Hepatitis C: the « Test and Treat » revolution

Point-Of-Care tests: from antibodies to NAT detection

BLOOD/LIQUIDS COLLECTION

ANTIBODY DETECTION

- Centralised lab
- Rapid test
- Point-Of-Care test

- Phlebotomy
- Dried blood spots
- Capillary / cravicular

HCV cAg / NAT DETECTION

- Centralised lab
- Point-Of-Care RNA / cAg

Dried blood spots

- PWID in Vietnam (Ho Chi Minh City): viremia detection using DBS for HCV-RNA and HCV cAg (86 subjects)
 - 92% for HCV-RNA
 - 87% for HCV cAg

- PWID in Tanzania (Dar-Es-Salaam): viremia detection using DBS for HCV-RNA and HCV cAg (153 subjects)
 - 99,1% for HCV-RNA
 - 76,7% for HCV cAg

Point-Of-Care antibody detection

MDM dropping center, Temeke district (Dar-Es-Salaam, Tanzania): screening with OraQuick, SD Bioline)¹

		HCV positive			HIV and HCV positive		
		n	%	(95% CI)	n	%	(95% CI)
	Male	64	27.7	(22.0-34.0)	35	15.2	(10.8-20.4)
PWID	Female	10	27.8	(14.2 - 45.2)	10	27.8	(14.2-45.2)
	All PWID	74	27.7	(22.4–33.5)	45	16.9	(12.6–21.9)
	Male	0	0.0	$(0.0-2.9)^{a}$	0	0.0	$(0.0-2.9)^{a}$
NIDUs	Female	3	8.1	(1.7 - 21.9)	2	5.4	(0.7 - 18.2)
	All NIDUs	3	1.8	(0.4-5.3)	2	1.2	(0.1-4.4)

Multiplex HIV/HCV and HBV MagIA test solution

¹Bowring, IJDP 2013

Capillary NAT Point-Of-Care

• OAT center within Muhimbili National Hospital (Dar-Es-Salaam, Tanzania)

n = 188	Reference test: Xpert [®] HCV VL plasma assay (cut- off 4 IU/mL)					
Index test: Xpert [®] HCV VL Fingerstick assay (cut-off 40 IU/mL)	HCV RNA quantifiable	HCV RNA negative	Total			
HCV RNA quantifiable	109	1	110			
HCV RNA negative	1	77	78			
Total	110	78	188			

Note: Xpert[®] HCV viral load (VL) Fingerstick assay; sensitivity 109/110 (99.1%), specificity 77/78 (98.7%).

Mohamed Z, Liver Int 2019

Why screening is not enough: necessity for cost-efficacy analysis

- Fingerstick sample error only
- Plasma sample error only
- Plasma technical error only
- Plasma and fingerstick sample errors
- Plasma technical error and fingerstick sample errors

FIGURE 2 Breakdown of testing errors for both Xpert® HCV RNA plasma and Fingerstick assay (n = 71). HCV, hepatitis C virus; VL, viral load

¹Mohamed Z, Liver Int 2019. ²Chevaliez, *submitted*

 From the cohort study in a dropping center in Tanzania¹: out of 220 PWID where fingerstick and plasma HCV(RNA testing were performed → 71 blood samples resulted in testing errors

 From a cohort study in a consumption room in France²: out of 90 PWID where DBS and fingerstick HCV-RNA testing was performed → 83 with valid fingerstick and 84 with valid DBS

Cost-effectiveness analysis of screening the PWID community in Dakar

Strategy	Testing sequence				
1 (ref.)	Anti-HCV Ab (lab – serum)	\rightarrow	RNA (lab – serum)		
2	Anti-HCV Ab (<mark>lab – DBS</mark>)	\rightarrow	RNA (<mark>lab – DBS</mark>)	•	Rate of coverage :
3	Anti-HCV Ab (POC)	\rightarrow	RNA (lab – serum)		test lab –sérum versus
4	Anti-HCV Ab (POC)	\rightarrow	RNA (<mark>lab – DBS</mark>)	•	tests lab – DBS ou POC (1 st test) Rate of lost-to-follow-up :
5	Anti-HCV Ab (POC)	\rightarrow	RNA (POC)		test lab –serum <i>versus</i>
6	Anti-HCV Ab (lab – sérum)	\rightarrow	HCV cAg (lab – serum)		tests lab – DBS or POC (2 nd test)
7	Anti-HCV Ab (lab – DBS)	\rightarrow	HCV cAg (lab – DBS)		
8	Anti-HCV Ab (POC)	\rightarrow	HCV cAg (lab – serum)		
9	Anti-HCV Ab (POC)	\rightarrow	HCV cAg (lab – DBS)		
10	RNA (POC)				
11	HCV cAg (lab – serum)				
12	HCV cAg(lab – DBS)				

Cost-effectiveness analysis of screening the PWID community in Dakar

- **Current testing sequence:** ven. lab HCV-Ab + ven. lab HCV-RNA
- Cost-effective sequence ([HCV]P of 38,4%):
 - Ab rapid test + HVC-RNA POC (98,4% of correct diagnosis)
 - Ab rapid test + ven. lab HCV-RNA (99,8% of correct diagnosis)
- Sensitivity analysis:
 - If [HCV]P of 55,5%:
 - If price of HCV-RNA POC cartridge < 9,78€:</p>
 - If price of HCV-Ab rapid test > 10,41 €:

HCV-RNA POC more costeffective

Budget analysis: cost-effective does not mean affordable...

Countries and strategies	Millions % GDP euros		% of national health expenditures		
Cameroon					
S_5 : Ab_POC \rightarrow RNA_POC	37,3	0,12	17,0		
S_4 : Ab_POC \rightarrow RNA_lab_DBS	55,6	0,18	25,2		
Côte d'Ivoire					
S_5 : Ab_POC \rightarrow RNA_POC	36,1	0,09	7,8		
S_4 : Ab_POC \rightarrow RNA_lab_DBS	39,1	0,10	8,4		
Senegal					
S_5 : Ab_POC \rightarrow RNA_POC	22,9	0,14	10,3		
S_4 : Ab_POC \rightarrow RNA_lab_DBS	24,4	0,15	10,9		

Duchesne L, submitted

Where do we stand in the future? Time for frugal innovation in diagnostics

Device (product or service) characterized by its simplicity, that is to say a low technological intensity and a low cost (financial, institutional) aiming to meet a still unmet need while guaranteeing a high degree of quality for his user

Tran and Ravaud BMC Medicine (2016) 14:102 DOI 10.1186/s12916-016-0651-1

BMC Medicine

COMMENTARY

Open Access

Frugal innovation in medicine for low resource settings

Viet-Thi Tran^{1,2,3*} and Philippe Ravaud^{2,3,4,5}

Microfluidic systems: the future ?

- Processing, amplification and detection of genetic material = long process
- Challenge: integrating all steps into « all in one »
- Microfluidics: using the physical properties of micro / nano conducts to separate particles that interfere with specific reagents
- Needs+++ for development in diagnostics

Thank you !