

HIV/AIDS Research Community Acknowledgement

We are extremely grateful to people living with HIV who generously participated in this research via donation of essential blood, lymph node and rectal tissue.

Disclosure of Interest

SL and JA collaborate with Infinity Pharmaceuticals and Merck Pharmaceuticals to test drugs to purge the latent HIV reservoir unrelated to this study.

Chemokine receptors (CKR) influence persistent HIV reservoir in blood memory CD4+ T cells

CKR and their chemokines may also influence HIV persistence in tissue sites

- HIV infection enriched in immune tissues like gut & LN due to:
 - lower antiretroviral drug levels¹ reduced access CD8+ T cells²
 - increased susceptibility T cell subsets³ eg. LN T_{FH} cells, CKR?

Receptor	Chemokine	Site	
CCR6	CCL20	Mucosa	
CCP7	CCL19	LN	
CCR7	CCL21		
	CXCL9		
CXCR3	CXCL10	Inflammatory	
	CXCL11		

¹ Fletcher PNAS 2014, Yukl AIDS 2010, Estes Nat Med 2017; ² Connick J Immunol 2007, 2014; ³ Chun JID 2008, Yukl JID 2013, Yukl PlosOne 2015, Banga NatMed 2016; Gosselin JImmunol 2010, El Hed JID 2010, Monteiro JImmunol 2011, Khoury AIDS 2016

HYPOTHESIS:

Expression of specific CKR (CCR6, CCR7, CXCR3) on memory CD4+ T cells & their chemokines are associated with HIV persistence in **gut & LN** tissues in individuals on ART

AIMS:

- Examine if the expression of CKR on memory CD4+ T cells & their chemokines are related to HIV reservoir size in rectum & LN of individuals on ART
- Examine if subsets of rectal memory CD4+ T cells expressing CCR6 &/or CXCR3 CKR preferentially harbour persistent HIV in individuals on ART

AIM 1: Study Design

PARAM	ETER	BLOOD n = 48	LN n = 8	RECTUM n = 20
Age, years		57	58	58
Gender, n (%):	Male Female Transgen.	46 (96%) 1 (2%) 1 (2%)	8 0 0	20 0 0
ART, years		8.5	10.9	11.8
Viral Load, copies / ml		< 40	< 40	< 40
CD4 T-cells: Nadir, cells/µl Current, cells/µl Current %		216 684 32	134 549 25	137 639 30
CD8 T-cells: Current, cells/µl		914	1069	988
CD4/CD8 T-cell	D4/CD8 T-cell count		0.55	0.67

Participant demographics

HIV integrated DNA & US RNA elevated in rectal CD4+ T cells versus blood

* Consistent with: Chun JID 2008, Yukl JID 2010, Yukl JID 2013

Rectal tissue enriched in CCR6+ CXCR3+ memory CD4+ T cells

Wilcoxon matched-pairs signed rank **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05

Persistent HIV DNA & RNA associated with CD4+ T cell subsets expressing CCR6/CXCR3 in rectum

	TIOOUE	01/5	HIV RESERVOIR			
TISSUE	CKR	iDNA	CA-US RNA	CA-US RNA: iDNA		
	LN	R6+X3+	0.96 (0.73 to 1.26) <i>p</i> =0.79	0.70 (0.44 to 1.09) <i>p=0.11</i>	0.84 (0.67 to 1.06) <i>p=0.15</i>	
		R6+X3-	0.95 (0.84 to 1.07) <i>p=0.41</i>	0.84 (0.71 to 1.00) <i>p=0.046</i> *	0.90 (0.80 to 1.02) <i>p=0.11</i>	
		R6-X3+	1.01 (0.92 to 1.12) <i>p=0.79</i>	1.13 (0.97 to 1.31) <i>p=0.12</i> \star	1.09 (0.98 to 1.20) <i>p=0.10</i>	
		R6-X3-	1.09 (0.92 to 1.29) <i>p=0.31</i>	1.34 (0.92 to 1.95) <i>p=0.13</i>	1.06 (0.89 to 1.26) <i>p=0.50</i>	

Negative Binomial Regression Modeling

Fold change in HIV reservoir outcome per unit increase in % CKR memory T cell predictor * p<0.05 observed in models adjusted for current &/or nadir CD4 count

AIM 2: Is persistent HIV enriched in specific CCR6/CXCR3 T cell subsets in rectum?

HIV iDNA not significantly enriched in rectal CCR6+CXCR3+ T cells

Wilcoxon matched-pairs signed rank **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05

CCR6+CXCR3+ T cells are a major contributor to the total HIV iDNA reservoir in rectum

Mann-Whitney test **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05

Conclusions and Implications

- 1. Rectum is a significant site of persistent HIV with high DNA and RNA
- Rectal CCR6+CXCR3+ T cells not enriched in HIV DNA vs pooled remaining T cell subsets but still a major contributor to the total HIV DNA reservoir in rectum due to the high frequency of these cells
- 3. Rectal HIV DNA and RNA positive association with % CCR6+CXCR3-T cells but negative association % CCR6+CXCR3+ T cells
 - as HIV DNA enriched in **blood** CCR6+CXCR3+ T cells, defective trafficking of CCR6+CXCR3+ cells between blood and rectum?
- As LN have a different distribution of T cell subsets and chemokines to rectum, tissue specific mechanisms may account for HIV persistence in these two sites
- Future studies will focus on interventions that interfere with trafficking of CCR6+ T cells to the GI tract, including anti-CCL20 (GSK)

Acknowledgements

University of Melbourne AUS

- Sharon Lewin
- Paul Cameron
- Gabriela Khoury
- Ajantha Solomon
- Surekha Tennakoon
- Megan Crane
- Lewin/Cameron Laboratory

University of Montreal

Canada

- Nicolas Chomont
- Remi Fromentin

DARE Collaboratory UCSF, USA

- Steven Deeks
- Ma Somsouk
- Mike McCune
- Rick Hecht
- Elizabeth Sinclair
- Lorrie Epling
- Rebecca Hoh
- Peter Bacchetti
- Wendy Hartogensis

Burnet Institute, AUS

Kylie Goy, Amanda Brass
& Rose Ffrench IMF

HIV+ Volunteers UCSF, USA

Australian Government National Health and Medical Research Council

NHMRC

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Rectal tissue enriched with CCL20 mRNA while LN tissue enriched with CCL19 & CCL21 mRNA

LN: HIV Reservoir related to expression of CCL5, CCL19, CCL21 or CXCL13 CK mRNA

		HIV RESERVOIR			
TISSUE	СК	iDNA	CA-US RNA	CA-US RNA: iDNA	
	CCL5	0.20 (0.05 to 0.84) p=0.028 *	0.15 (0.02 to 1.22) <i>p</i> =0.076	0.71 (0.06 to 9.15) <i>p=0.79</i>	
	CCL20	0.30 (0.09 to 1.00) <i>p=0.050</i> *	0.26 (0.04 to 1.74) <i>p=0.17</i>	0.97 (0.18 to 5.29) <i>p=0.97</i>	
	CCL19	0.15 (0.05 to 0.50) <i>p=0.0017</i> *	0.05 (0.01 to 0.30) <i>p=0.0011</i> *	0.37 (0.07 to 2.09) <i>p=0.26</i>	
	CCL21	0.33 (0.10 to 1.07) <i>p</i> =0.064 *	0.10 (0.01 to 0.73) <i>p=0.024</i> *	0.49 (0.10 to 2.29) <i>p=0.36</i>	
LN	CXCL9	0.88 (0.22 to 3.54) <i>p=0.86</i>	5.10 (0.40 to 64.39) <i>p=0.21</i>	2.20 (0.79 to 6.09) p=0.13	
	CXCL10	0.88 (0.13 to 6.10) <i>p=0.89</i>	1.48 (0.06 to 34.51) <i>p=0.81</i>	1.48 (0.29 to 7.53) <i>p=0.63</i>	
	CXCL11	0.50 (0.12 to 2.07) <i>p=0.34</i>	0.71 (0.05 to 9.73) <i>p=0.80</i>	2.26 (0.50 to 10.23) <i>p=0.29</i>	
	CXCL12	0.64 (0.36 to 1.14) <i>p=0.13</i>	0.45 (0.17 to 1.16) <i>p=0.10</i>	0.81 (0.39 to 1.68) <i>p=0.56</i>	
	CXCL13	1.29 (0.57 to 2.95) p=0.54	3.94 (1.11 to 14.04) p=0.034 *	2.02 (0.72 to 5.69) p=0.18	

Negative Binomial Regression Modeling

Fold change in HIV reservoir outcome per 2 fold increase in CK mRNA predictor p<0.05 observed in models adjusted for current or nadir CD4 count

RECTUM: HIV Reservoir not related to current expression of chemokine mRNA

	СК	HIV RESERVOIR			
TISSUE		iDNA	CA-US RNA	CA-US RNA: iDNA	
	CCL5	1.07 (0.52 to 2.20) <i>p=0.85</i>	1.81 (0.50 to 6.61) <i>p=</i> 0.37	1.35 (0.51 to 3.58) <i>p=0.55</i>	
	CCL20	0.97 (0.68 to 1.37) <i>p=0.85</i>	0.92 (0.41 to 2.05) <i>p=0.83</i>	1.05 (0.67 to 1.66) <i>p=0.83</i>	
	CCL19	1.15 (0.84 to 1.58) <i>p=0.37</i>	1.25 (0.63 to 2.52) <i>p=0.52</i>	1.07 (0.65 to 1.76) <i>p=0.78</i>	
	CCL21	0.83 (0.61 to 1.12) <i>p=0.22</i>	0.92 (0.52 to 1.65) <i>p=0.79</i>	1.07 (0.69 to 1.66) <i>p=0.77</i>	
RECTUM	CXCL9	1.19 (0.76 to 1.88) <i>p=0.44</i>	1.54 (0.82 to 2.90) <i>p=0.18</i>	1.29 (0.65 to 2.57) <i>p=0.47</i>	
	CXCL10	1.25 (0.85 to 1.82) <i>p=0.26</i>	1.95 (0.98 to 3.89) p=0.057	1.38 (0.77 to 2.48) <i>p=0.28</i>	
	CXCL11	1.24 (0.90 to 1.72) p=0.19	1.68 (0.97 to 2.90) <i>p=0.063</i>	1.29 (0.80 to 2.08) <i>p=0.30</i>	
	CXCL12	0.86 (0.34 to 2.14) <i>p=0.74</i>	0.28 (0.03 to 2.49) <i>p=0.25</i>	0.64 (0.20 to 2.07) <i>p=0.46</i>	
	CXCL13	1.05 (0.81 to 1.35) <i>p=0.73</i>	1.21 (0.79 to 1.85) <i>p=0.39</i>	1.12 (0.80 to 1.56) <i>p=0.51</i>	

Negative Binomial Regression Modeling

Fold change in HIV reservoir outcome per 2 fold increase in CK mRNA predictor * p < 0.05 observed in models adjusted for current &/or nadir CD4 count

Rectal CCR6+ CXCR3+ memory CD4+ T cells also enriched in CCR5

Wilcoxon matched-pairs signed rank **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05

Rectal tissue enriched in CCR6+ CXCR3+ CD8total memory T cells

 $\label{eq:wilcoxon} Wilcoxon\ matched-pairs\ signed\ rank \\ ^{****}\ p < 0.0001, \quad ^{***}\ p < 0.001, \quad ^{**}\ p < 0.01, \quad ^{*}\ p < 0.05 \\ \end{array}$

Calculating relative contribution of a T cell subset to total HIV iDNA reservoir in all T cell subsets

1. Determine relative pool of HIV infected cells per T cell subset

(HIV iDNA per 10^6 cells in T cell subset) x (subset frequency) / 100

ie. assess for each T cell subset: R6+X3+, R6+X3-, R6-X3+ or R6-X3-

2. Determine sum of relative pool of infected cells in ALL T cell subsets

ie. add individual relative pool of infected cells for 4 R6X3 subsets

3. Determine relative contribution of T cell subset to total HIV iDNA in all subsets

(Relative pool of HIV infected) / (Sum of relative pool of HIV infected) x 100 cells per T cell subset