15/08/2018

Prevention of Liver Fibrosis and Cancer - Northern Territory

Can hepatocellular carcinoma be detected earlier than current screening methods using a urine test?

Presenters: Kelvin Muller & Jack Wang Project Supervisor: Dr Jane Davies

Hepatocellular Carcinoma (HCC)

- Liver cancer was the second most common cause of cancer death worldwide in 2015
- HCC is the most common primary liver malignancy with \approx 800,000 deaths per year globally
- High mortality rate of HCC is largely attributable to insufficient diagnostic resources
- Hepatitis B Virus (HBV) is the most prevalent risk factor for HCC

HBV in the Northern Territory

- In 2014 estimated that 22,000 Aboriginal and Torres Strait Islander people living with HBV, \approx 3,500 in the NT
- 90% of children with acute infection will progress to chronic hepatitis B, increasing their risk of HCC
- Median Survival from HCC Diagnosis to death for Aboriginals within the NT is 64 days

Treatment Options

Project Aims

- Adapt a urinary metabolite test to screen for HCC that is:
 - suitable for use within the Australian and Northern Territory context
 - sufficiently sensitive to detect HCC at stages amenable to curative therapies

Why conduct Australian Study?

- Heterogenous metabolic profiles vary amongst ethnic groups, due to dietary, genetic and environmental factors
- HBV/C4 genome different characteristics
- Require specific metabolic studies or validation studies as a minimum

Finding biomarkers - Metabonomics

 Methods of metabolite characterisation - proton nuclear magnetic resonance (H NMR) spectroscopy and mass spectrometry (MS)

Metabolic profiling

- H NMR based on behaviour of nuclei subjected to a magnetic field
- signal returns from molecules containing hydrogen provide a high-resolution metabolic NMR spectra

Metabolic profiling

• MS - constituent fragments are detected and distinguished by their molecular weight & ionic charge

Metabolic profiling

Clinical Application of Biomarkers

- Complex molecular and metabolic interactions occur as HCC develops and progresses
- Identification of a single biomarker to assess presence and severity of HCC is unlikely

"Angiogenic switch" in hepatocellular carcinoma. VEGF: Vascular endothelial growth factor; HCC: Hepatocellular carcinoma; HIF 1: Hypoxia inducible factor 1.

Collaboration with Imperial College

Recruitment

Preliminary Results

- Samples from 54 participants underwent initial principal component analysis in Dec 2017
 - 1. Healthy control: 10 (20)
 - 2. HBV no cirrhosis: 32 (30)
 - 3. HBV with cirrhosis: 5 (10)
 - 4. HCC: 7 (10)
- Promising initial data, need further sample and data analysis, and investigations into feasibility and diagnostic accuracy

HCC samples (blue) are separated from other groups, suggesting compositional difference between the groups

Preliminary Results

- Plots demonstrate the predictive ability of the models.
- High Q²Y value of 0.52 (HCC vs control) and 0.62 (HCC vs HBV w/o cirrhosis), suggesting that the models are predictive

Expected Key Outcomes

- Identify discriminatory metabolites to generate a urinary biomarker panel
- Study will serve as a proof of concept to inform and enable a subsequent validation study (NHMRC grant application submitted)

Acknowledgments

- Supervisor Dr Jane Davies
- Project Manager Paula Binks
- Prof Simon Taylor-Robinson & Imperial College Staff
- Matthew Madison Liver Clinic
- Menzies staff
- Flinders University Advanced Studies
- Prof Steve Tong

15/08/2018

Questions?

