The Genetic Traits of Full-Length HIV sequenced from Memory T Cell Subsets

Bethany A. Horsburgh Palmer Laboratory The Westmead Institute for Medical Research

How can we make a magic bullet?

How can we make a magic bullet?

- What do we want to hit?Where is the intact virus?
 - What is our strategy?
 - What does it look like?
 - e.g What is it's tropism?
 - How is it surviving? Is it replicating? Is the host cell?
- How do we scope it out?
 - Are all assays of the reservoir adequate to tell us if a provirus could be infectious?

Sequencing whole HIV Genomes: The FLIPS Assay

Participants

Participant (SCOPE ID)	Viral load (copies/mL)	Time before initiation of therapy (months)	ART duration (years)	
ACUTE PARTICIPANT	rs			
2302	<40	3.4	4.6	
2115	<40	0.6	17.3	
2275	<40	0.8	15.3	
CHRONIC PARTICIPA	NTS			
2452	<40	24.4	3.2	
2026	<40	117	17.7	
2046	<40	70	16.3	
			Wes Insti	tm

5% (35) of 728 HIV-1 proviruses sequenced were intact

The proportion of genetically-intact provirus found in different cell subsets was significantly different (p = 0.001)

Horsburgh et al. manuscript under review

Intact HIV was found most frequently in EM and HLA-DR⁺CD4⁺T cells

manuscript under review

Identical Sequences: An Indication of Cell Proliferation

The majority of proviruses used the CCR5 co-receptor

Cell-associated RNA matches DNA derived from FLIPS

Cell-associated RNA matches defective provirus

Conclusions

 Genetically intact (and likely replication-competent) HIV is enriched in HLA-DR+ and EM cells

Conclusions

• Genetically intact (and likely replication-competent) HIV is enriched in HLA-DR+ and EM cells

• Cell proliferation is maintaining intact and defective HIV

• The reservoir is largely CCR5-tropic -> This indicates that the latent HIV reservoir is established early and maintained by T cell proliferation and differentiation

• Intracellular RNA is produced by defective provirus

How are we getting to that magic bullet now?

- Can we narrow the cellular location of the reservoir down even further?
 - Future work will be looking at subdivisions of these subsets, to see if we can narrow in our focus
- Are these expansions of intact provirus stable over time?
 - Longitudinal samples will reveal if such expansions remain after 4 extra years of therapy

Acknowledgments

Provirus found in HLA-DR⁺ and EM CD4⁺ T cells is significantly more likely to have an intact Tat coding sequence (p = 0.0259)

