

POPULATION TRENDS

PREVENTION

THERAPY

POPULATION TRENDS

élevé possible , amener to s les peuples au niveau de santé le plu ие всеми народами возможно высшего у овня здоровь ent by all peoples of the highest possibl level of health ... alcanzar pra todos los pueblos el grado más alto sible de salud ستبياح وسيب ارقنا

KAPOSI SARCOMA INCIDENCE

Source: New York State Cancer Registry

CONTINUING COMORBIDITIES

Cancer 37%

Composition of SNA/death					
Compo	nents	Overall			
CVD		82			
Can	cer	97			
📃 Нер	atic events	19			
Ren	al events	8			
Dea	th, other causes	54			
Any SNA/death 260					

Grund, Baker, Deeks, et. al. Plos One 2016

MALIGNANCIES IN PEOPLE WITH HIV

Malignancy All Cancer Types **AIDS Defining Cancers** Kaposi sarcoma Diffuse large B-cell lymphoma Burkitt lymphoma Primary CNS lymphoma Invasive cervical cancer Non-AIDS Defining Cancers Anogenital Hodgkin Lymphoma Head and Neck Hepatocellular Lung Cancer

Pancreas

per 100,000 PY)	Standardised	Proportion Occurring People with HIV/AI
468	2.1 (2.0-2.3)	
173	1300 (1100–1500)	81.6% (81.2%-81.9
50	9.6 (7.7–12)	6.0% (5.8%-6.1
7	15 (7.9-27)	19.9% (18.1%-21.7
15	250 (160–360)	27.1% (26.1%-28.
44	2.9 (1.9-42)	0.42% (0.37%-0.4
10	9.2 (5.5–15)	
19	5.6 (3.9–7.8)	
14	1.7 (1.1–2.5)	
8	2.7 (1.5–4.6)	
59	2.6 (2.1–3.1)	
8	2.2 (1.2–3.6)	

Parkin DM. Int J Cancer 2006;118:3030–3044. Shiels M, JAMA 2011;305:1450-9.

INFECTION RELATED CANCERS

- World Health Organisation estimates:
 - 18% of cancer cases are caused by infection
 - 12% are caused by one of seven human tumour viruses

Human T-cell Lymphotrophic Virus (0.3%)

Merkel Cell Polyomavirus (<0.1%)

Epstein Ba us(1.0)/

17.

3

20

Am

Kaposi Sarcoma Herpesvirus (0.9%)

INFECTION RELATED CANCERS

Around 18% of all cancers worldwide Most common cancers in many resource-limited settings

HIV MALIGNANCIES IN ASIA

•No prior systemic data

 Aimed to assess the occurrence, risk factors and survival outcomes associated with malignancies in the TREAT Asia HIV **Observational Database**

•195 patients (3%) were diagnosed with a malignancy

69 (1%) haematological malignancies (mostly NHL; 0.08 per 100 person-years, 52% mortality

126 (2%) non-haematological (KS, cervical; 0.17 PYS), 27% mortality

• Risks: age, CD4 count, WHO country income level

 Significant burden, and likely significant under-diagnosis in lower income countries

CONTRIBUTORS TO RISK

Biggar, R.J et al. J Natl Cancer Inst (2007).

CONTRIBUTORS TO RISK

Bertisch Am J Epi 2013

DIVERGENT TRENDS IN INCIDENCE

Shield M, JAMA 305: 1450-9 (2011)

DIVERGENT TRENDS IN INCIDENCE

Parkin DM. Int J Cancer 2006;118:3030–3044. Shiels M, JAMA 2011;305:1450-9.

AGING OF PEOPLE WITH HIV

CONTRIBUTORS TO RISK

PREVENTION AND SCREENING

ROLE OF IMMEDIATE ART

Strategic Timing of Antiretroviral Therapy Trial

Randomised trial of immediate versus deferred therapy:

All with CD4 count of more than 500 at entry

Either: antiretroviral therapy immediately (immediate-initiation group) or Defer ART until CD4 350 cells or AIDS

(deferred-initiation group)

Primary composite end point was any serious AIDS-related event, serious non-AIDS-related event, or death from any cause

	Immediate ART	Deferred ART				
Number (%)	42 (1.8%)	96 (4.1%)				
Rate	0.60	1.38				
Hazard Ratio	0.43 (95% CI: 0.30 to 0.62, p <0.001)					

INSIGHT START Study Group N Engl J Med 2015;373:795-807.

IMMEDIATE ART PREVENTS CANCER

	Immediate ART	Deferred ART
No. with event	14	39
HR (Imm/Def)	0.36 (95%CI: 0.19 t	to 0.66, p=0.001)

INSIGHT START Study Group N Engl J Med 2015;373:795-807.

IMMEDIATE ART PREVENTS CANCER

INSIGHT START Study Group N Engl J Med 2015;373:795-807.

IMPLICATIONS OF START FOR CANCER

Immediate ART initiation significantly reduces risk of infectionrelated cancer during HIV infection

- Benefit of immediate ART not solely attributable to HIV RNA suppression
- May also be mediated by other mechanisms, such as a curb on oncogenic virus co-infection and reduction of inflammation. Suggests immunity and inflammation are playing a significant role in cancer risk even at "near normal" CD4 counts
 - Possible unrecognised immune defects
 - Further research is needed to identify mediators of the benefit of immediate ART initiation in reducing risk of cancer and other comorbidities.

ADDITIONAL PREVENTION APPROACHES

Smoking cessation

- Elevated risk of lung cancer
- Above population level smoking rates
- Some risk likely directly attributable to HIV

Sun exposure

- Elevated risk of non-melanomatous skin cancer Metabolic risk factors
- Likely to increase in importance with age Vaccination
- Hepatitis B
- Human papillomavirus (?target groups)

SCREENING APPROACHES

Standard population screening

• Evidence this may be less complete in people with HIV despite elevated risk – vertical care pathways

Specific screening approaches

- Lung cancer standard practice
- Anal cancer Anoscopy, cytology, other techniques all under investigation

 Haematological malignancies Immune activation markers and genetic markers under investigations Role for identifying and targeting high risk populations within optimally treated HIV populations remains to be explored

Low dose CT for lung cancer – under investigation in US in HIV, not

TREATMENT

CHANGING CANCER MORTALITY IN GENERAL POPULATION

Percentage Change From Baseline (Cancer Specific Mortality)

HIV INFECTION AND CANCER OUTCOMES: BURKITT LYMPHOMA

HODGKIN LYMPHOMA IN HIV

Primary Author	Ν
----------------	---

	Primary Author	Ν	HAART era?	Stage III/IV	RR	CR	OS
EBVP	Errante	35	X / V	83	91	74	16m
VEBEP	Spina	71		70	78	67	69% (24m
ABVD*	Levine/ Gastaldi/Xicoy	21/ 8/62	X / /	75- 100	62- 100	43- 100	76% (60m
Stanford V	Spina	59	×	71	89	81	59% (60m
BEACOPP	Hartmann	12		92	100	100	75% (36n

Errante D, et al. Ann Oncol 1999;10:189-95. Spina M, et al. Ann Oncol 2008; 19(iv152, abstract no. 227). Levine AM, et al. JAIDS 2000;24:444-50. Gastaldi R, et al. Ann Oncol 2002;13:1158-60. Xicoy B, et al. Haematologica 2007;92:191-8. Spina M, et al. Blood 2002;100:1984-8. Hatrman P, et al. Ann Oncol 2003;14:1562-9.

า)

DLBCL THERAPY IN HIV

	Primary Author	Ν	HAART era?	RR %	CR %	OS
CHOP	Vaccher	104 (80/24)	×	_	36 50	50% at 0.5y 50% at 1.5y
CDE-R	Spina	74		75	70	64% (2y)
CHOP-R	Kaplan	149		65	58	50% (2.5y)
EPOCH-R	Sparano	48		88	55-73	65% (2.5y)
EPOCH-RR	Dunleavy	33		94	91	68% (5y)

Vaccher E, et al. Cancer 2001;91:155-63. Spina M, et al. Blood 2005;105:1891–1897. Kaplan LD, et al. Blood. 2005;106:1538–1543. Sparano JA, Blood. 2010 Apr 15; 115(15): 3008–3016.. Dunleavy K, et al. Blood. 2010;115:3017–3024.

HIV INFECTION AND CANCER OUTCOMES

Population studies suggest HIV positive people with cancer have worse overall survival and cancer-specific survival compared to uninfected people Factors implicated in these outcomes Biologically aggressive disease More advanced stage at diagnosis Decreased immune surveillance Increased infective and immune-related complications HIV approach those in the uninfected population What other factors are affecting outcomes in malignancy in people with HIV?

- However in clinical trials outcomes in many malignancies, outcomes for people with

HIV INFECTION AND CANCER OUTCOMES

Cancer Type	Uninfected Cases without Treatment, N (%)	HIV-Infected Cases without Treatment, N (%)	Adjusted Odds Ratio (95%CI)*
DLBCL	5,157 (23.40)	207 (23.03)	1.39 (1.17, 1.65)
Cervix	1585 (8.55)	14 (12.73)	1.46 (0.79, 2.69)
Lung	53,323 (24.05)	181 (34.94)	1.55 (1.28, 1.87)
Anus	481 (8.05)	38 (8.28)	0.88 (0.59, 1.30)
Hodgkin Iymphoma	1,839 (20.19)	75 (29.30)	1.68 (1.26, 2.24)
Prostate	52,579 (20.77)	63 (30.58)	1.48 (1.08, 2.02)
Colorectum	12,868 (7.22)	23 (14.74)	1.89 (1.15, 3.09)
Breast	12,067 (4.68)	9 (9.00)	1.60 (0.77, 3.34)

HIV INFECTION AND CANCER OUTCOMES

Local Stage Cancers:	Cancer Type	Standard Treatment Modality ^a	Adjusted Odds Ratio (95%CI) ^b
	DLBCL	Chemotherapy	2.02 (1.50, 2.72)
	Cervix	Surgery or radiotherapy	1.30 (0.39, 4.29)
	NSCLC	Surgery or radiotherapy	2.43 (1.46, 4.03)
	Colon	Surgery	4.77 (1.76, 12.96)
	Breast	Surgery	1.38 (0.58, 3.29)

Predictors of Lack of Treatment (all stages):

- Low CD4 count
- Male gender with IV drug use as mode of HIV exposure
- Older age
- Non-Hispanic Black race
- Distant or unknown cancer stage
- Not insurance status

Slide courtesy of presenter and represents the presenter's opinion

ROLE OF ART

Role of HAART varies depending on tumor type:

Part of anti-tumor therapy in some cases (particularly viral malignancies): **KS, CNS lymphoma**

Improves outcomes by other mechanisms in others: anal cancer, perhaps cervical cancer

However not necessary immediately in all cases: often deferred in lymphoma therapy to avoid drug interactions

Newer antiretroviral agents have fewer interactions with drugs including chemotherapy

Consultation with ID and HIV pharmacy prior to chemotherapy (potentially including regimen changes)

Slide courtesy of presenter and represents the presenter's opinion

PREVENTING OI

Prevention of opportunistic infection and reactivation or progression of latent viral infections (herpes, hepatitis B and C, others)

Risk may persist depending on agents used, and late infections can be life threatening (post-rituximab)

Few prospective data to guide use of anti-infective agents

Where possible, maintain or commencement of HAART

Commonly adapt from general HIV guidelines:

Herpes prophylaxis if relevant history

PCP prophylaxis if CD4<200 and MAC if <100

May continue prophylaxis past conventional thresholds until recovery

CLINICAL TRIAL ACCESS

People with HIV are routinely excluded from trials of anti-cancer agents, despite the disproportionate burden of malignancy

CLINICAL TRIAL ACCESS

JOURNAL OF CLINICAL ONCOLOGY

Modernizing Clinical Trial Eligibility Criteria: Recommendations of the American Society of Clinical Oncology-Friends of Cancer Research HIV Working Group Thomas S. Uldrick, Gwynn Ison, Michelle A. Rudek, Ariela Noy, Karl Schwartz, Suanna Bruinooge, Caroline Schenkel, Barry Miller, Kieron Dunleavy, Judy Wang, Jerome Zeldis, and Richard F. Little

Friends of ASCO Recommendations

Patients with CD4+ T-cell counts >350 cells/mL should generally be eligible

Lower CD4+ count eligibility is often appropriate

Patients with no history or remote history of AIDS-defining opportunistic infections should generally be eligible For studies of AIDS-defining cancers with curative potential, exclusion limited to uncontrolled opportunistic infections may be

appropriate

Patients on prophylactic antimicrobials need not be excluded, although specific agents may be excluded for interactions or toxicities.

Generally recommend concurrent treatment with effective ART according to current local treatment guidelines

Recommend exclusion of specific ART agents, when indicated

INTEGRATED CLINICAL MODELS

Interventional Clinical Trials

Integrated Correlative Science

Multidisciplinary Clinical Team

> Prospective Cohort Outcome Evaluations

Clinically Annotated Biospecimen Repository

Translational Science

Slide courtesy of presenter and represents the presenter's opinion

IMMUNE MODULATION IN KAPOSI SARCOMA

Emerging classes of agents targeting host immune response to cancer

- Activity in a variety of solid and haematological tumours
- May be particularly useful in malignancy associated with infection and immune deficiency
- Responding to immune deficits underlying pathogenesis

Multiple classes

- Checkpoint inhibitors
- Immune modulatory thalidomide derivatives (IMID)

Pomalidomide

- Most potent current IMID
- Excreted renally and by hydrolysis
- No predicted interactions with ART

CLINICAL RESPONSES

	Enrolled (Assessable)	Overall Response	Complete Response	Partial Response	Stable Disease	Progressive Disease	Time to Response
Combined	22 (22)	16 (73%)	4 (18%)	12 (55%)	3 (14%)	3 (14%)	4 weeks[sep](4–36
HIV positive	15 (15)	9 (60%)	3 (20%)	6 (40%)	3 (20%)	3 (20%)*	8 weeks[][](4–32
HIV negative	7 (7)	7 (100%)	1 (14%)	6 (86%)	0	0	4 weeks [][](4–36

*Includes one subject who became non-adherent to ART and protocol therapy

CLINICAL RESPONSES

Baseline (Medial Aspect Right Foot)

•

IMMUNE MODULATION IN OTHER VIRAL TUMOURS IN HIV

Kirby Institute

IMMUNE CHECKPOINT INHIBITION IN HIV MALIGNANCIES

Available at: https://clinicaltrials.gov/ct2/show/NCT02408861 (accessed Sept. 2018). Nivolumab in combination with ipilimumab is not TGA-registered for Hodgkin Disease. This combination has not been evaluated for safety or efficacy by the TGA for this indication

AMC-095

Post first line or unresectable including HL

Nivolumab ± Ipilimumab

Phase I/II

Standard ART

CD4>100 or >200 (stratified)

Kirby Institute

CONCLUSIONS

- Elevated risk of malignancy remains a defining feature of HIV infection
- Epidemiology of HIV-associated malignancies is evolving with reduction in severe immunosuppression
- Population ageing into time of greatest cancer risk
- Early initiation of ART is the most important intervention to prevent cancer, even at high CD4 counts
- Other interventions including smoking cessation are likely complementary
- With effective ART and immune reconstitution, standard therapies are deliverable with multi-disciplinary support
- Attention to drug-drug interactions and OI prevention required
- Better access to investigational cancer therapies is needed

