

- Human T-cell lymphotropic virus (HTLV-1)
- First described Retrovirus infecting humans (1980)
- A cousin of the second described Retrovirus (1983/4)
 - HIV-1 → some similarities but different.
- It's a virus an evolutionary machine
- Obeys only the laws of evolution and fitness
- Two phases:
 - Virion
 - RNA genome
 - The infected cell
 - Proviral DNA genome

Human T-cell lymphotropic virus (HTLV-1)

- Lifelong infection upon transmission
- Mutations when viral RNA \rightarrow cDNA
- Infects primarily by cell-cell transfer
 - Receptor is glucose transporter 1 (Glut-1)
 - Assisted by neuropilin-1 (NRP-1), and
 - heparan sulfate proteoglycans (HSPG).
- Primarily targets T-cells (CD4⁺ and CD8+)
 - Can infect B-cells, monocytes, DCs, myeloid cells, endothelial cells
- No detectable cell-free virus in plasma
- Proviral loads range 50 2,000,000 : million
- Diagnosis by serology, Western blot, proviral PCR (ddPCR)
- No specific drugs, no vaccines

Human T-cell lymphotropic virus (HTLV-1) - similar to HIV-1, but also subtly different

- HIV-1 virions are found in high levels in blood
 - HTLV-1 mostly exists within infected cells
- HIV-1 eliminates targeted T-cells

 HTLV-1 does not eliminate infected cells
- HIV-1 damages immunity by removing T-cells
 HTLV-1 damages immunity by altering T-cell function
- HIV-1 disease monitored by levels of virus in blood
 HTLV-1 disease monitored by % T-cells infected

Human T-cell lymphotropic virus type-1 (HTLV-1)

- Infects 10 15 million; transmitted by breastfeeding, sexual contact, and blood transfer
- >90% remain asymptomatic
 - 5% develop ATL
 - 1-4% develop HAM/TSP

Adapted from Gessain and Cassar, 2012 and Watanabe, 2011

Human T-cell lymphotropic virus type-1 (HTLV-1)

- Infects 10 15 million; transmitted by breastfeeding, sexual contact, and blood transfer
- >90% remain asymptomatic
 - 5% develop ATL
 - 1-4% develop HAM/TSP

Adapted from Gessain and Cassar, 2012 and Watanabe, 2011

HTLV-1c: High prevalence in remote central Australia

 High prevalence in hospital based surveys ~ 43% Einsiedel and Woodman, MJA 2010

Einsiedel et al., PLoS NTD 2014

- 40% prevalence in a community based survey (Einsiedel et al. MJA 2016)
 60% in others (Einsiedel et al. Intl. UTU) (2017)
 - > 60% in others (Einsiedel et al., Intl. HTLV 2017)
- Prevalence of HTLV-1 infection among 97 Indigenous Australian residents of a remote Northern Territory community, according to age group

Age category	Male	Female
Children (1—14 years)	1 of 13 (7%)	0 of 10
Adults (15—34 years)	7 of 24 (29%)	6 of 19 (32%)
Adults (\geq 35 years)	10 of 15 (67%)	7 of 16 (44%)

Einsiedel et al PLoS NTD 2014

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

HTLV-1: genetic structure - complex retrovirus with many regulatory and accessory genes

Adapted from Satou and Matsuoka, 2013

Proviral genome sequence divergence of HTLV-1c

- Papua New Guinea strains, (Yanagihara et al., PNAS 1991)
- Solomon Island strains, HTLV-1 MEL 1 / MEL 5 (Gessain, et al., J. Virol. 1993)
- Australian Indigenous strain, HTLV-1 MSHR-1 (Bastian et al., J. Virol. 1993)
- Four Australian proviruses (Cassar et al., PLoS Negl Trop Dis. 2013)
 - 2 distinct provirus clades
 - LTR, Gag, Tax sequence on 19 others

Several studies identified sequence divergence of p12/X-

Frozen PBMC provided by Dr. Lloyd Einsiedel (Alice Springs Hospital)
22 full proviruses from consenting patients in the ASH HTLV-1c cohort

HTLV-1c sequence alignment of remote Indigenous Australians

Patient #9	 		1 1	
Patient #10		• I I	1	
Patient #11	 			1 1 1 1 1 1
Patient #12	 			
Patient #13				
Patient #14				
Patient #15			1.01	
Patient #16	 			1 1 1 10 1
Patient #17				
Patient #18				
Patient #19				
Patient #20				
Patient #21	 			
Patient #22	 <u> </u>			
Patient #23				
Patient #24				
Patient #25				
Patient #26				
Patient #29				
Patient #29 Patient #30				
Patient #29 Patient #30 Patient #31				
Patient #27 Patient #29 Patient #30 Patient #31 Consensus				
Patient #29 Patient #30 Patient #31 Consensus				
Patient #29 Patient #30 Patient #31				

Snapgene software V.4.04

Genomic Region	Nucleotide Divergence %	Amino Acid Divergence %	
Rex	5.26	13.23	
Env	6.27	3.07	
Pol	6.54	3.91	
Тах	6.69	7.65	
Pro	6.95	8.97	
Gag	7.60	3.96	
5'LTR	9.14	n/a	
3'LTR	9.40	n/a	
pX region	9.50	21.95	
p30	10.41	15.68	
HBZ	12.36	19.12	
p27	12.96	22.35	
p8	13.33	18.84	
p12	19.39	26.80	

Differences in HTLV-1a vs HTLV-1c?

Phylogenetic comparison of HTLV-1c in remote Indigenous Australians

p12 start codon mutation

	_						
		-	,	p12	2		
HTLV-1	A → o	TAT	GCTGTI	тсесс	ттстс	AGCCC	сттб
Patient #9	→ C	TAC	бстбсс	TGCC	ттссси	AGCTC	сттб
Patient #10	→ c	СТАС	стс <mark>с</mark> с	TGCC	тто <mark>с</mark> си	AGCTC	сттб
Patient #11	→ c	стас	бстбт	TGCC	ттс <mark>с</mark> си	AGCTC	сттб
Patient #12	→ c	CTAC	GCTG <mark>CC</mark>	TGCC	ттс <mark>с</mark> си	AGCTC	сттб
Patient #13	→ c	CTAC	осто <mark>с</mark> с	TGCC	ттссси	AGCTC	сттб
Patient #14	→ o	CTAC	осто <mark>с</mark> с	TTGCC	ттссси	AGCTC	сттб
Patient #15	→ c	CTAC	стс <mark>с</mark> с	TGCC	тт <mark>сс</mark> си	AGCTC	сттб
Patient #16	→ C	CTAC	GCTGT	ттссс	ттосо	GCTC	сттб
Patient #17	→ C	CTAC	бстбт	ттосс	ттосо	GCTC	сттб
Patient #18	→ C	CTAC	GCTGT	TGCC	ттссси	AGCTC	сттб
Patient #19	→ C	CTAC	бстбт	ттосс	ттс <mark>с</mark> си	AGCTC	сттб
Patient #20	→ c	CTAC	стс <mark>с</mark> с	TGCC	ттс <mark>с</mark> си	AGCTC	сттб
Patient #21	→ c	CTAC	GCTG <mark>CC</mark>	TGCC	ттс <mark>с</mark> си	AGCTC	сттб
Patient #22	→ c	CTAC	GCTG <mark>CC</mark>	TGCC	ттс <mark>с</mark> си	AGCTC	сттб
Patient #23	→ c	CTAC	GCTG <mark>CC</mark>	TGCC	ттс <mark>с</mark> си	AGCTC	сттб
Patient #24	→ C	CTAC	GCTG <mark>CC</mark>	TGCC	ттссси	AGCTC	сттб
Patient #25		_	GCTG <mark>NC</mark>		_	_	
Patient #26			бстбт				
Patient #29			GCTGT				
Patient #30			GCTGT			_	
Patient #31	→ (CTAC	GCTGT	TGCC	стосси	AGCTC	CTTG

ATG = start codon

 $A \times G \rightarrow A \subset G$

methionine \rightarrow threonine

Snapgene software V.4.04

p12 variation between HTLV-1a and -1c

HTLV-1C Red - significant substitution, Orange - similar property, Blue - very similar property, Blue - very similar proven et al., 2010

- Lack of p12 initiating Met in ALL subtype C proviruses
- Similar mRNA splice acceptor sites compared to HTLV-1a
 - Highly inefficient cryptic splice donor downstream from Tax/Rex SD2 ?
- P12 / p8 ER-processing signals retained
- mRNA or protein for p12/p8 not yet elucidated

p12 protein functions

Promotes viral replication

Modulates Ca²⁺ release \rightarrow upregulates TCR signalling

Binds IL-2 receptors \rightarrow upregulates T-cell proliferation

Re-routes MHC-1 to proteosome for degradation \rightarrow immune evasion

p8 protein functions

Cleaved product of p12, inhibits viral replication Downregulates TCR signalling \rightarrow leads to anergy of T-cells Clusters LFA-1 and ICAM-1 \rightarrow increases T-cell contact

No p12 mRNA or protein detected

Target all

spliced species Target p12 sRT+ sRTrRTľŦ 1kb NTC Ŧ SRT-SRT-Ĕ Primers designed to target *p12* • 1000 850 650 mRNA sequence for RT-PCR • Cloned and sequenced all 500 400 amplicons 300 No amplification of p12 mRNA 200 • 100 kDa Jurkat MT-2 HTLV-1c • Probed HTLV-1c proteins with 15 anti-HTLV-1a No detection of HTLV-1c p12 10 protein THE UNIVERSITY OF **Doherty** Institute

Significant genomic differences of HTLV-1c

	entage Diverg		6 - H		
	Nucleotide level	Amino acid level	Splice Acceptor HTLV-1a Stop		
9kB Genome	8.5%	n/a	p12 AUG Stop		
LTR	8.2%	n/a			
Gag	7.4%	4%	Cryptic Splice		
Тах	7%	3%	Acceptors?? HTLV-1c		
HBZ	14%	19%	p12 ACG Stop		
p12	20%	29%			

Adapted from Yurick, D., 2016

MELBOURNE

Novel HBZ mRNA species detected

- Primers designed to target HBZ mRNA on the antisense strand
- Novel splice donor and acceptor sites detected for HBZ minor
- Deduced protein sequence of HBZ minor is 38 amino acids shorter than HBZ major, all in the activation domain

```
HTLV-1aMajorHBZMAASGLFRCLPVSCPEDLLVEELVDGLLSLEEELKDK-EEEEAVLDGLHTLV-1cMajorHBZMAASGPFRCLPVPRPEDLLVEDLVDGLLSLEDDLKDQREEEESVLDGVHTLV-1cMinorHBZKAASGRA-----DGVHTLV-1aMajorHBZLSLEEESRGRLRRGPPGEKAPPRGETHRDRQRRAEEKRKKKKEREKEHTLV-1cMajorHBZLSLEEESR-LRWGLPGEEAPPRGETHRDRQRRAEEKRKKKKRREKEHTLV-1cMinorHBZLSLEEESR-LSWGLPGEEAPPRGETHRDRRRRAEEKRKKKRREREKE
```


Function of anti-sense viral product HBZ

Conclusions

Relatively higher divergence for genes associated with ATL and HAM-TSP

• p12 / p8 and HBZ

p12 start codon mutation \rightarrow may be expressed through a novel mechanism

• Chimeric host/virus mRNA, internal initiation?

HTLV-1c may have adapted to not require p12

Novel HBZ mRNA may affect viral pathogenesis

Amino acid deletions in the activation domain of HBZ

- Decreased HBZ-inhibition of Tax expression → immune exhaustion?
- Promote cell survival?

These differences may alter transmission and pathogenicity of HTLV-1c, and contribute to the unique disease outcomes seen in remote Indigenous communities in Central Australia

Acknowledgements

Alice Springs Hospital/Baker IDI:

- Lloyd Einsiedel
- Hai Pham

South Australian Health & Medical Research Institute:

James Ward

Doherty Institute:

Damian Purcell Lab -

David Yurick	Behnaz Heydarchi
Georges Khoury	Natalia Salazar
Charlene MacKenzie	Leigh Harty
Chris Gonelli	Nicole Tay
Hannah King	Shuo Li
Michelle Lee	Ashley Hirons

Doherty Institute:

Sharon Lewin and her Lab – Megan Crane, Jenny Audsley

Doherty Institute: Kedzierska Lab –

Katherine Kedzierska Bridie Clemens Sneha Sant Liyen Loh

National Reference Lab

Stirling Dick VIDRL: Peter Revill

Kim Wilson

Burnet Institute: Gilda Tachedjian

Indigenous Australian volunteers!

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

What is the HTLV-1c PVL doing over time?

- Blind study of 83 HTLV-1 patients with > 2 or more time points (gDNA)
- Collection dates from: 09 Mar 2008 10 Nov 2015
- Study spans: 7 years, 8 months, 1 day

Clinical profiles of HTLV-1c participants in PVL Longitudinal Study					
	Female n = 98	Male n = 126			
Age range (years)	25 - 72	23 - 85 56 ± 12.5			
Age, years (mean±SD)	51 ± 10.8				
Sex (n%)	33/83 (39.8.0)	50/83 (60.2)			
Median HTLV-1 PVL per genome ¹	4.38 x 10 ³ (IQR, 3600 - 5.3 x 10 ³)	4.5 x 10 ³ (IQR, 3610 - 5.48 x 10 ³)			
Median HTLV-1 PVL per T-cell ¹	2.5 x 10 ⁴ (IQR, 18800 - 3.23 x 10 ⁴)	3.3 x 10 ⁴ (IQR, 29100 - 3.62 x 10 ⁴)			
1HTLV-1c Tax copy number and interguartile range (IQR) per 10 ⁶ PBMCs					

The Peter Doherty Institute for Infection and Immunity A joint venture between The University of Melbourne and The Royal Melbourne Hospital

HTLV-1 PVL Over Time

Examination of HTLV-1c PVL changes over time

- HTLV-1c PVL longitudinal study in 83 remote Indigenous central Australians
- Post-hoc analysis generated hypothesis: high HTLV-1c PVL in remote Indigenous Australians increase risk of certain clinical inflammatory diseases

Conclusions: Australian HTLV-1c infections

- HTLV-1c from remote central Australian Aboriginal communities
 - · Highly prevalent
 - Efficient community transmission
- · Relatively higher divergence for genes associated with ATL and HAM-TSP
 - p12/p8 and HBZ
- High rates of inflammatory disease (bronchEx) and blood stream infections
 - Lower rates of ATL and HAM-TSP
- Open questions and areas of research:
 - Viral mRNA structure and expression?
 - · Disease associations in the longitudinal study
 - Immune mechanisms of "controllers" in high prevalence communities.
 - No current community PREVENTION STRATEGIES, specific drugs or vaccines.

A joint venture between The University of Melbourne and The Royal Melbourne Hospital