# Significant Increases In Pharyngeal *Neisseria* gonorrhoeae Positivity And Cases Isolated To The Pharynx, 2011-2015: The ACCESS Project

<u>Comninos NB<sup>1</sup></u>, Rutherford A<sup>2</sup>, Garton LM<sup>3</sup>, Callander D<sup>4</sup>, Guy RJ<sup>5</sup>, Donovan B<sup>6</sup>, Fairley CK<sup>7</sup>, Goddard SL<sup>8</sup>, Grulich AE<sup>9</sup>, Templeton DJ<sup>10</sup>; on behalf of the ACCESS collaboration.

Affiliations: <sup>1</sup>RPA Sexual Health, Sydney; <sup>2</sup>School of Public Health and Community Medicine, University of New South Wales, <sup>3</sup>Illawarra Sexual Health Service, NSW; <sup>4</sup> The Kirby Institute, University of New South Wales, <sup>5</sup>Sydney Sexual Health Centre, <sup>6</sup>Melbourne Sexual Health Centre, <sup>7</sup>Alfred Hospital, <sup>8</sup>Monash University; <sup>9</sup>Central Clinical School, University of Sydney.

Disclosures: none



#### Overview

#### Introduction

- key issues informing research
- Background: pharyngeal gonorrhoea

#### Aims and objectives

#### Methods

- design
- analysis

#### Results

main findings

#### **Conclusion and discussion**

- Interpretation of findings
- Limitations
- Explaining main findings



# Introduction: Gonorrhoea in Australia

Notifications nearly doubling for males and females over the past decade



### Introduction: Why worry?

Gay and bisexual men:

-disproportionately affected

-most likely to be diagnosed with HIV

#### STIs increase HIV transmission

|                                           | Adjusted HR | 95% CI     | P trend value       |
|-------------------------------------------|-------------|------------|---------------------|
| Anal NG (NAAT)                            |             |            | 0.002               |
| No                                        | 1           | -          |                     |
| Yes                                       | 7.12        | 2.04-24.79 |                     |
| Anal warts (self-reported)                |             |            | 0.002               |
| No                                        | 1           |            |                     |
| Yes                                       | 3.63        | 1.62-8.14  |                     |
| HSV-1 (Prevalent)                         |             |            | 0.095               |
| No                                        | 1           | -          |                     |
| Yes                                       | 2.42        | 0.86-6.83  |                     |
| Insertive UAI HIV unknown                 |             |            | 0.761               |
| Insertive UAI HIV positive                |             |            | 0.013               |
| Receptive UAI withdrawal HIV unknown      |             |            | 0.002               |
| Receptive UAI withdrawal HIV positive     |             |            | 0.108               |
| Receptive UAI ejaculation HIV unknown     |             |            | 0.551               |
| Receptive UAI to ejaculation HIV positive |             |            | 0.004               |
| HR, hazard ratio; CI: confidence interval |             | Jin et al. | JAIDS 2010;53:144-9 |

### Introduction: why worry?

Multi-drug resistant gonorrhoea is a vitally important clinical and public health challenge

- WHO 'Call to Action' - July 2017

"To control gonorrhoea, we need new tools and systems for better prevention, treatment, earlier diagnosis, and more complete tracking and reporting of new infections, antibiotic use, resistance and treatment failures," Dr Marc Sprenger, Director of Antimicrobial Resistance at WHO (2017).



#### The coming crisis: Multi-drug resistant Gonorrhoea



#### What we should be doing ... and what we are doing



### Introduction: Pharyngeal gonorrhoea

#### Pharyngeal gonorrhoea:

- Disproportionately affects gay & bisexual men<sup>1</sup>, female sex workers<sup>2</sup>
- Asymptomatic short-lived infection (median duration 6-12wks)<sup>3</sup>
- Treatment failures seen<sup>4</sup>, may be more common than at anogenital sites<sup>5</sup>
- Transmissible to anogenital sites<sup>6</sup>
- Younger age and oral sex practices<sup>7</sup>
- Reservoir of emerging antimicrobial resistance<sup>8</sup>

1. Trebach, Chaulk, Page, Tuddenham, Ghanem, Sex Transm Dis 2015
2. Mc Grath-Lone, Marsh, Hughes, Ward, sex transm Infect 2014; Park, Marcus, Pandori, Snell, Philip, Bernstein, Sex Transm Dis 2012; Diaz et al., BMC Pub Health 2013
3. Chow, Camilleri, Ward et al., Sex Health 2015; Chow, Lee, Tabrizi et al., Sex Transm Infect 2016; Apeewokin, Geisler, Bachmann, Sex Transm Dis 2010
4. Read, Limmios, McNutty, While, Lahra, Sex Health 2013; Ohnishi et al. Antimic Ag Chemo, 2017
5. Moran, Sex Transm Dis 2009
6. Readering and Child Information Sour Transm Dis 2019
6. Readering and Child Information Sour Transm Dis 2019
6. Readering and Child Information Source Sour

Wulan J, ex Hubbin DS 2009
 Bernstein et al. Clin Infect DIS 2009; Kinghom, Sex Transm Infect 2010; Chow, Cornelisse, Read et al. Sex Transm Infect 2017, Transm



## Introduction: Pharyngeal gonorrhoea



### **Introduction: Research Aims and Questions**

Gay and bisexual men (GBM) and Female sex workers (FSW) Testing at sexual health clinics across Australia 5 year period (2011-2015)

Aims:

- To explore temporal trends in pharyngeal gonorrhoea test positivity
- To contrast these trends with trends in anogenital gonorrhoea test positivity
- To explore factors associated with pharyngeal gonorrhoea



# **Methods: Study Design**

- Cross-sectional design
- Ethics approval: ACCESS\* Project has multi-site approval, concept sheet and proposal approved by committee
- Data from 42 sexual health clinics across Australia

\*ACCESS Project: Australian Collaboration for Coordinated Enhanced Surveillance of Sexually Transmitted Infections and Blood Borne Viruses

- Commenced 2008
- Collects data from sexual health clinics and other sites across Australia
- Such data provides insight into trends in testing practices, disease patterns and risk factors for STIs



# **Methods: Analysis**

"Positivity": proportion of all tests with a positive result

STATA: Line listed, de-identified data: testing occasions

Univariate & Multivariate Analyses Random Effects Model – Clustering

Temporal trends in pharyngeal gonorrhoea positivity

*Factors* associated with positive pharyngeal tests



# **Methods: Analysis**

Factors associated with positive pharyngeal gonorrhoea tests

Variables Included: Calendar year of testing Age Testing site location (region of Australia) Aboriginal/Torres Strait Islander status Country of birth Injecting drug use (reported, in the previous 12 months) Contact with an STI (reported, not specifically gonorrhoea) Sex work (reported in the 12 months prior to consultation) HIV status Anogenital symptoms Number of sexual partners (non paying) in the previous 6 months.

Excluded Condom use



# **Results: Gay and bisexual men**





Pharyngeal positivity increased by over 300% (p- trend<0.001).

Anogenital positivity: smaller increases

Independent predictors of a positive pharyngeal test:

- younger age (p-trend<0.001)
- more partners (ptrend<0.001)
- STI contact (p<0.001)</li>
- injecting drug use (p<0.001)
- anogenital symptoms (p<0.001)
- HIV-positive status (p=0.005)



# Result: Gay and bisexual men





# **Results: Discussion and Interpretation**

#### **Strengths**

First nation-wide study:

Significant temporal increase in pharyngeal gonorrhoea positivity

Significant temporal increase in "isolated" pharyngeal cases

Several factors associated with positive pharyngeal gonorrhoea test in our study also predicted incident pharyngeal gonorrhoea in the HIM study<sup>1</sup>

- Younger age
- More partners
- STI contact

Among both GBM and FSW: STI contact associated with positive pharyngeal test

8. Templeton, D. J., Jin, F., McNally, L. P et al., Sex Transm Infect 2010.



# **Results: Discussion and Interpretation**

#### **Limitations**

- Study Type
- Missing Data, Power (FSW)
- Condom use

#### **Repeat testers**

**Different testing methods** across clinics (culture vs more sensitive NAAT<sup>9</sup>)

Culture swabs to NAAT  $\rightarrow$  increase positivity<sup>10</sup>

9. Smith, D. W., Tapsall, J. W., Lum, G., Comm Dis Intell 2005. 10. Cornelisse, V. J., Chow, E. P., Huffam, S et al., Sex Transm Dis 2017.



# **Results: Discussion and Interpretation**

#### Sub-analysis: dealing with Repeat testers and NAAT vs Culture



Temporal trend remains highly significant and greater in the pharynx than at anogenital sites

Same factors associated with positive pharyngeal test (except injecting drug use)

- younger age (p-trend<0.001)</li>
- more partners (p-trend=0.004)
- STI contact (p<0.001)
- anogenital symptoms (p<0.001)</li>
- HIV-positive status (p=0.004)

**Conclusion: Discussion, Interpretation** 

May partially (but not wholly explain)

Repeat testing throughout the period

Culture to NAAT (one clinic)

More frequent testing in more recent years

First visits, NAATs only: Temporal trend appears to remain highly significant



Health

Local Health District

Sydney

# **Conclusion: Discussion and Interpretation**

Explaining these findings: research priorities, areas of active research

?Increasingly effective contact tracing

?Increasingly engaging at-risk GBM (younger, more partners, STI contact)

?Changing oral sex practices

?Treatment failures

?Pharynx to pharynx transmission



# **Conclusion: Recommendations**

Pharyngeal gonorrhoea may be a key driver of increasing gonorrhoea notifications in Australia

Urgent need for:

-increased testing frequency  $\rightarrow$  frequent pharyngeal testing in at-risk groups

-Maintain and strengthen surveillance, contact tracing, engagement of at risk GBM

-Novel strategies to combat pharyngeal gonorrhoea



### **Acknowledgements**

Study investigators: Margaret Hellard, Mark Stoové, Carol El-Hayek (Burnet Institute); Rebecca Guy, Basil Donovan, Denton Callander (Kirby Institute); Wayne Dimech (NRL)

Operational Committee: Jason Asselin, Lucy Watchirs Smith, Clarissa Moreira, Gijo Thomas, Long Nguyen, Caroline van Gemert

Advisory Committee: Scott McGill, Stella Pendle, Ben Wilcock, Melanie Walker, Scott Bowden, Deborah Bateson, Helen Tyrrell, Philip Reed, Christopher Fairley, Aaron Cogle, Christine Selvey, Norm Roth, David Nolan, Catherine O'Connor, Jules Kim, Mark Boyd, Jane Hocking, Michael West, Nicola Stephens, Lisa Bastian

Site investigators: Sarah Martin, Stephen Davies, David Baker, Alison Nikitas, Katherine Brown, Mark Bloch, Nathan Ryder, Debbie Allen, Philip Reed, David Smith, Christopher Carmody, Christopher Fairley, Eva Jackson, Catherine O'Connor, Frederick Lee, Josephine Lusk, Andrew Carr, John McAllister, Anna McNulty, Robert Finlayson, David Lewis, Andrew Small, Jen Kok, Philip Cunningham, Bradley Forssman, Nicholas Doong, Stella Pendle, Wendle Rosevear, Graham Neilsen, Craig Atkinson, Julian Langton-Lockton, Darren Russel, Maree O'Sullivan, Cheryn Palmer, Krispin Hajkowicz, Arun Menon, Goran Pervan, Alison Ward, Charlotte Bell, Eugene Athan, Jennifer Hoy, Ian Woolley, Norm Roth, BK Tee, Sally Rowell, Lewis Marshall, Jenny McCloskey, Manoji Gunathilake, Louise Owen, Mark Wilson, Justin Manuel, Bill Kefalas, David Townson.

Funding: Core funding for ACCESS comes from the Australian Department of Health.



# **Acknowledgements**

- Associate Professor David Templeton
- Dr Denton Callander
- Dr Alison Rutherford
- Linda Garton
- Associate Professor Anna McNulty
- Professor Rebecca Guy
- Professor Basil Donovan
- Professor Christopher Fairley
- Dr Sian Goddard
- Professor Andrew Grulich
- Associate Professor Catherine O'Connor
- Dr Georgia Carins
- Dr Heulwen Rees





