

Treating Gonorrhoea in the Absence of Cephalosporins Practical Considerations and Future Options

2017 Australian Sexual Health Conference - 9th November 2017

David A. Lewis

Western Sydney Sexual Health Centre Marie Bashir Institute for Infectious Diseases and Biosecurity & Sydney Medical School-Westmead, University of Sydney

Cephalosporin Allergy

- · Cephalosporins widely used for treatment and surgical prophylaxis
- Historically, cephalosporins avoided in penicillin allergic patients based on a '10% cross-reactivity' rule
- Rule now thought to have a poor evidence base
 - Early cephalosporins contained small amounts of penicillin (confounder)
 - Allergic reactions to cephalosporins may be primary reactions (c.f. cross-reactions)
 - Many early studies had small numbers
- In the modern AMR era, use of 'questionable' antibiotics may result in sub-optimal therapy
- Ceftriaxone is a critical drug for STI management (Ng, Hd, Tp, Kg)

Cephalosporin Allergy

Type of reaction	Frequency (%)	References
Dermatologic	1.0-2.8	Norrby, Sanders et al., Arndt & Jick, Platt
Positive direct anti-globulin test	1.0-2.0	Sanders et al., Platt, Meyers
Anaphylaxis	0.0001-0.1	Gadde et al., Sogn et al., Apter et al.
Fever	0.5-0.9	Sanders et al., Meyers
Eosinophilia	2.7-8.2	Sanders et al., Platt

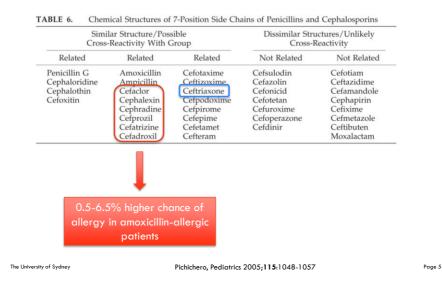
 Cross-reactivity between cephalosporins and penicillins depends on the generation of the cephalosporin – higher incidence with 1st/2nd generation cephalosporins (Atanaskovic-Merkovic et al., Pichichero)

> Norrby, Drugs 1997;**34** (Suppl 2):105-120; Sanders et al., Ann Intern Med 1985;**103**:70-78; Arndt & Jick, JAMA 1976:**235**:918-923; Platt, J Antimicrob Chemother 1982;**10** (Suppl C):135-140; Meyers, Am J Med 1985;**79**:96-103; Gadde et al., JAMA 1993;**270**:2456-2463; Sogn et al. Arch Intern Med 1992;**152**:1025-1032; Apter et al.,Am J Med 2006;119:354:e11-e19; Atanaskovic-Markovic et al., Pediatr Allergy Immunol;2005:16;341-347; Pichichero, Pediatrics 2005;**115**:1048-1057

The University of Sydney

Penicillin and Cephalosporin Cross-Reactions

• Ability to generate an immune response depends on the chemical structure of the cephalosporin side chain (Pichichero)


Similar Structure/Possible Cross-Reactivity With Group		Dissimilar Structures/Unlikely Cross-Reactivity		
Related	Related	Related	Not Related	Not Related
Penicillin G	Amoxicillin	Cefotaxime	Cefsulodin	Cefotiam
Cephaloridine	Ampicillin	Ceftizoxime	Cefazolin	Ceftazidime
Cephalothin	Cefaclor	Ceftriaxone	Cefonicid	Cefamandole
Cefoxitin	Cephalexin	Cefpodoxime	Cefotetan	Cephapirin
	Cephradine	Cefpirome	Cefuroxime	Cefixime
	Cefprozil	Cefepime	Cefoperazone	Cefmetazole
	Cefatrizine	Cefetamet	Cefdinir	Ceftibuten
	Cefadroxil	Cefteram		Moxalactam
5-6.5% higher ch ergy in penicillin- patients				

The University of Sydney

Pichichero, Pediatrics 2005;115:1048-1057

Page 4

Amoxycillin/Ampicillin and Cephalosporin Cross-Reactions

Skin Testing

- If reaction to a penicillin or a cephalosporin was not IgE-mediated and not serious, safe to administer repeated courses of that antibiotic (e.g. vomiting, diarrhoea or non-specific rash)
- IgE-mediated reactions likely to become more severe with time and result in anaphylaxis (e.g. bronchospasm, angioedema, hypotension, urticaria or a pruritic rash)
- Penicillin skin testing ~60% predictive for clinical hypersensitivity
 - $_{\circ}$ Only really helpful if the penicillin and cephalosporin share similar side chains
- Value of cephalosporin skin testing is questionable
 - o Individual degradation components have not been identified
 - $_{\circ}$ $\,$ Skin testing is usually conducted with the native compound

The University of Sydney Cormier et al., Paediatr Child Health 2007;12:387-388; Pichichero, Pediatrics 2005;115:1048-1057 Page 6

Summary of Recommendations

Cephalosporin generation	Cross-reactivity issue	OK to use
] st	(+) anaphylaxis to penicillin	+/-
1 st , 2 nd	Similar side chain	No
] st	(-) anaphylaxis to penicillin and different side chain	Yes
2 nd	Different side chain	Yes
3 rd or higher	Not applicable	Yes

- There are three management options for patients with a history of penicillin allergy with positive penicillin skin test responses
 - \circ Receive a non- β -lactam antibiotic
 - Receive a cephalosporin through graded challenge
 - Receive a cephalosporin through rapid desensitization

The University of Sydney

Cormier et al., Paediatr Child Health 2007;12:387-388

Page 7

Non-Cephalosporin Treatment Options

Reliable option

Unavailable in Australia

• Spectinomycin 2 g IM stat (not available in Australia)

Sub-optimal options

Give as dual therapy & try to obtain in vitro susceptibility data

- Gentamicin 240 mg IM stat
- Rifampicin 900 mg po stat
- Azithromycin 2 g po stat
- Aztreonam 1 g IM stat
- Ciprofloxacin 500 mg po stat

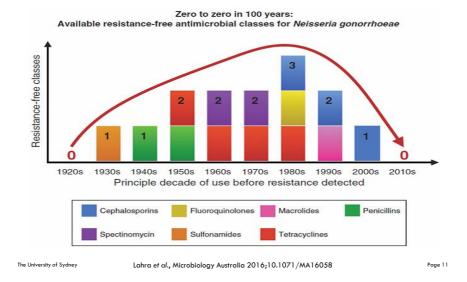
- Blinded 2-arm multicentre non-inferiority randomised trial in 14 English Sexual Health clinics
- 720 patients randomized
 - $_{\circ}$ IM gentamicin 240 mg (n=358) + oral azithromycin 1 g
 - $_{\circ}$ IM ceftriaxone 500 mg (n=362) + oral azithromycin 1 g
- **Primary outcome**: bacteriological clearance of *N*. gonorrhoeae at all infected sites by a negative NAAT at 2 weeks post treatment
 - Primary outcome data for 598 (82%) patients (ceftriaxone, 306; gentamicin 292)
 - Clearance at 2 weeks: 299/306 (98%) ceftriaxone, 267/292 (91%) gentamicin
 - $_{\circ}$ Gentamicin has substantially lower efficacy in oro-pharynx (80% vs. 98% clearance)
- Gentamicin failed to show non-inferiority to ceftriaxone

The University of Sydney Brittain et al., Trials 2016;17:558; Ross et al., Sex Transm Infect 2017;93(Suppl 2):A42-A43

Emergence of Extensively Drug Resistant Neisseria gonorrhoeae (XDR-NG), Central Japan, 2009

Is Neisseria gonorrhoeae Initiating a Future Era of Untreatable Gonorrhea?: Detailed Characterization of the First Strain with High-Level Resistance to Ceftriaxone⁷†

Makoto Ohnishi,¹ Daniel Golparian,² Ken Shimuta,¹ Takeshi Saika,³ Shinji Hoshina,⁴ Kazuhiro Iwasaku,⁵ Shu-ichi Nakayama,¹ Jo Kitawaki,⁵ and Magnus Unemo²⁺


The University of Sydney

H041 strain

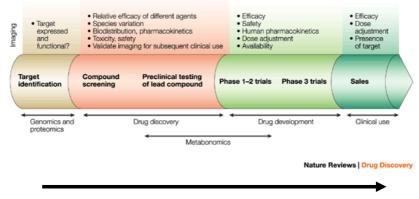
Ohnishi M et al. , Antimicrob Agents Chemother 2011;55:3538-3545

Page 10

Available Resistance-Free Antimicrobial Classes for Neisseria gonorrhoeae

WHO Priority Pathogens List for Research & Development of New Antibiotics (2017)

Priority 1: CRITICAL


Priority 2: HIGH

Enterococcus faecium, vancomycin-resistant Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant Helicobacter pylori, clarithromycin-resistant Campylobacter, fluoroquinolone-resistant Salmonella spp., fluoroquinolone resistant Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone resistant

Priority 3: MEDIUM

Streptococcus pneumoniae, penicillin-non-susceptible Haemophilus influenzae, ampicillin-resistant Shigella spp., fluoroquinolone-resistant

Pipe Line for the Introduction of New Drugs

15 years and \$800 million from target to product

5,000-10,000 compounds are screened for every 5 drugs that enter clinical trials and for every 1 drug that obtains FDA approval

The University of Sydney

Solithromycin (CEM-101)

- Novel fluoroketolide undergoing clinical development for treatment of community-acquired pneumonia, gonorrhoea and other infections
- Active against gonococci (including XDR strains H041 and F89) as well as C. trachomatis and M. genitalium
- · Less prone to generate in vivo resistance c.f. other macrolides
- Gonococci with MIC \geq 256 mg/L will fail Rx (high-level AZM^R)
- 2-centre open-label non-comparative Phase 2 safety completed

The University of Sydney

Golparian et al., Antimicrob Agents Chemother 2012;**56**:2739-2742; Hook et al., Clin Infect Dis 2015;**61**:1043-1048

Page 14

Solithromycin vs. Ceftriaxone Gonorrhoea Treatment Trial (Solitaire-U Trial)

- **Phase 3** open-label randomized multi-centre study (Solitaire-U) in USA (Cleveland) and Australia (Melbourne/Sydney)
- Solithromycin 1g stat vs. ceftriaxone 500mg/azithromycin 1g stat
 - 262 men/women enrolled initially up to 76 extra women/adolescents were included through an R&D agreement with NIAID (slow recruitment)
 - Analysis of the first 262 participants demonstrated that solithromycin failed to show non-inferiority to standard of care

Drug	Modified intention to treat (mITT)	Microbiologically evaluable (ME) population		
Solithromycin	80.5%	91.3%		
Ceftriaxone/Azithromycin	84.5%	100%		
Note: Primary and point was culture regative at day 7-8				

The University of Sydney (N. gonorrhoeae NAAT at day 21 was also performed as a molecular test of cure) Page 15

Zoliflodacin (ETX0914, AZD0914)

- Novel oral spiropyrimidinetrione with dual DNA topoisomerase II inhibitory activity targeting the gyrB and parE genes
- Phase 2: Study conducted in partnership with NIAID
 - Demonstrated high microbiological cure rates at 6 +/- 2days
 (98% of 49 patients receiving 2g and 100% of 47 patients receiving 3g vs 100% of 21 in the ceftriaxone arm)
 - Good tolerability and minimal side effects (12% 20/21 mild, 1 mod)
 - $_{\circ}$ $\,$ No resistance at baseline and no development of resistance on treatment
- Licensure in the US and the EU will require a single Phase 3 study with approximately 600 patients
- Formulation development on track for Phase 3 Entasis/Global Antibiotic & Research Development Partnership (GARDP)

Gepotidacin (GSK2140944)

- Novel triazaacenaphthylene antimicrobial with DNA topoisomerase II inhibitory activity targeting the gyrA and parC genes
- Claimed that there is no cross-resistance with fluoroquinolones due to different binding to the DNA-protein complex at a location away from that of fluoroquinolones
- However gepotidacin MIC₉₀ reported as higher in ciprofloxacin resistant isolates
- **Phase 1**: Safety profile consistent with other marketed antibiotics and there were no significant changes in cardiac parameters

The University of Sydney

Scangarella-Oman et al., ASM Microbe Meeting, 2016

Page 17

Gepotidacin (GSK2140944)

- **Phase 2**: Open-label randomized multi-centre dose-ranging (1.5g/3g) study with negative culture at 3-7 days post-Rx as primary outcome
- 106 randomized patients (101men/5 women) enrolled with either positive N. gonorrhoeae NAAT or culture results
- 105/106 received treatment

The University of Sydney

- 69 participants had positive baseline cultures microbiological success good for both treatment groups: 1.5g (29/30, 97%) and 3g (37/39, 95%)
- Isolates from 2/105 patients developed resistance between baseline and test-of-cure (D86N in ParC and A92T in GyrA)
- Most side-effects were gastro-intestinal (mostly mild/moderate)
- Phase 3 study under consideration

Perry C et al., Sex Transm Infect 2017;**93**(Suppl 2):A11; Scangarella-Oman et al., Sex Transm Infect 2017;**93**(Suppl 2):A84

Conclusions

- Wherever possible, use ceftriaxone to treat gonorrhoea
- Ceftriaxone allergy is rare and the drug can be given to patients with a history of IgE-mediated penicillin or amoxicillin/ampicillin drug allergy
- Clinicians working in remote clinical settings may prefer to have therapy administered in a hospital environment if there is a history of anaphylaxis/past ITU admission
- In rare situations where ceftriaxone is contra-indicated, patients are best managed in consultation with a Sexual Health specialist
- Some sub-optimal alternatives exist and could be given as dual therapy to maximise the chance of clinical cure – new and better drugs are on the way!

The University of Sydney