Exploring the HIV reservoir with full-length provirus sequencing

Outline

- 1. Background to HIV provirus sequencing
- 2. Origin and use of the "FLIPS" assay
- 3. Sequence assembly workflow
- 4. Provirus annotations: Intact vs defective

Cell Reports Resource

Bonnie Hiener Beth Horsburgh Sarah Palmer

Identification of Genetically Intact HIV-1 Proviruses in Specific CD4⁺ T Cells from Effectively Treated Participants

Bonnie Hiener,^{1,9,*} Bethany A. Horsburgh,¹ John-Sebastian Eden,^{1,2} Kirston Barton,¹ Timothy E. Schlub,³ Eunok Lee,¹ Susanne von Stockenstrom,⁴ Lina Odevall,⁴ Jeffrey M. Milush,⁶ Teri Liegler,⁵ Elizabeth Sinclair,⁵ Rebecca Hoh,⁵ Eli A. Boritz,⁶ Daniel Douek,⁷ Rémi Fromentin,⁸ Nicolas Chomont,⁸ Steven G. Deeks,⁵ Frederick M. Hecht,⁵ and Sarah Palmer

¹Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia ²Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia

Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 77, Sweden *Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA ⁶Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20814, USA

Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20814, USA ⁸Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada

Lead Contact

*Correspondence: bonnie.hiener@sydney.edu.au https://doi.org/10.1016/j.celrep.2017.09.081

What is a Provirus?

HIV Lifecycle

HIV Reservoir

For a cure, we need to know where the virus hides

- For example, we know that the virus remains dormant in resting, memory CD4+ T-cells.
- But...
 - which particular cell subsets?
 - where are the viable "replication-competent" viruses?
 - And, in what proportion?

Provirus sequencing

How do we known if a virus is replication-competent?

High-throughput sequencing looking for intact proviruses

No mutations, no deletions, no frameshift, no stop codons, no inversions

The FLIPS assay Full Identification of Genetically Intact HIV-1 Proviruses within Memory CD4* T cell Subsets -1 🗖 1 🗖 dΟ Length 3 OÚC Full-Length Individual Proviral Sequencing ndividual **Provirus** Transitional Mem Effector Me Sequencing The Westmead Institute

The Westmead Institute

Illumina MiSeq sequencing

• DNA 'Tagmentation' (Tagging + Fragmentation)

- Sequence "barcodes" allows multiple samples per run
- One MiSeq run = 20 million sequence reads (2x150nt)
- 60 to 80 "proviruses" per run

1. Quality control

- · Assess quality of the data
 - Sequencing provides per base "quality" scores
 - Score reflects a probability of error

• Trim sequences

- Based on quality threshold (1%)
- Of any sequence artifacts like primer or adapters
- Filter reads by length (>50bp)

Open source = FastQC, Trimmomatic & Cutadapt

2. Merge overlapping pairs

 Paired reads are from one fragment, sequenced from each end

2. Merge overlapping pairs*

 If read length (2X150nt) more than fragment length, then reads will overlap and can be collapsed

3. De novo assembly

Reconstructing the sequence from short reads

3. De novo assembly

- Cuts reads into smaller bits ("words"), then looks for overlap and then extends to make longer "contigs"
- Each set should contain amplified target (i.e. provirus)
- Downsample reads to 10K to run on typical desktop

- Full set of 300,000 reads = slow, needs larger memory

- · Provirus should be an assembled contig
 - Most abundant & matched to PCR product size

Open source = Trinity, Spades, Velvet

4. Final provirus sequences

- Identify HIV provirus from list of de novo contigs
- Map the full set of reads and take a final "consensus"
- · Look for heterogeneity in data
 - One amplicon = One provirus = No SNPs or variation
- · The final 'provirus' must then be annotated/analysed

Intact or Defective?

Open source = Bowtie, Samtools, Freebayes

Provirus annotation

The Westmead Institute

The

Westmead Institute

Provirus Phylogeny

- Compare sequences for each
 patient
- · Map proviruses to cell subsets
- Identical sequences suggest clonal expansions
- Where intact genomes?
- Must check non-coding regions!

Where are the intact proviruses?

- Intact proviruses were unequally distributed between T-cell subsets
- Effector memory cells containing the largest proportion
 of genetically intact HIV-1 proviruses

Pros and Cons

- Previous methods targeting *env* or *gag-pol* overestimated frequency of intact proviruses
- High-throughput sequencing screen more provirus
- The context of provirus integration cannot be determined using FLIPS
- Single copy assays prone to contamination
- PacBio single molecule seq (i.e. 1 provirus = 1 read)

Summary

- FLIPS utilizes NGS to sequence and characterize HIV-1 proviruses
- FLIPS can identify genetically intact and likely replication competent HIV-1 proviruses
- Identical HIV-1 proviruses suggest maintenance of reservoir by cellular proliferation & importance of reservoir in *Effector Memory T Cells*

Acknowledgments

- Palmer lab WIMR: Centre for Virus Research A/Prof S. Palmer B. Hiener B. Horsburgh E. Lee V. Morcilla K. Fisher
- M-A. De Scheerder C. Wang Z. Boyer
- A. Winckelmann

WIMR: Centre for Virus

Research Prof T. Cunningham

J. Lai

University of Montreal N.Chomont R.Fromentin

Immunology Laboratory, Vaccine Research Centre, NIH E. Boritz D. Douek

Ramaciotti Centre UNSW

University of Sydney T. Schlub

S. G. Deeks J. Milush T. Liegler M. Somsouk P. Hunt E. Sinclair P. Lewis H. Hatano L. Epling M. Kilian T. Ho A. Tan J. Custer L. Loeb R. Hoh L. Poole

F. M. Hecht

Department of Medicine UCSF

National Health and Medical Research Council

We acknowledge with gratitude the participants of this study