

The use and efficacy of moxifloxacin for *Mycoplasma genitalium* infection

2015 - 2024

Presenting Author: Laura Griminick Matthews she/her

School of Population and Global Health, The University of Melbourne

School of Translational Medicine, Monash University

Melbourne Sexual Health Centre, Alfred Health

Australasian Sexual & Reproductive Health Conference

September 18, 2025
Tarndanya, Kaurna Country

Acknowledgement of Country

I am privileged to be able to work and live on Wurundjeri Country, and to be visiting Tarndanya on Kaurna Country this week.

Sovereignty of these lands has never been ceded and will always firmly belong to Wurundjeri and Kaurna peoples.

Disclosures of Interest

None to declare

Mycoplasma genitalium (MG)

Bacterial sexually transmitted infection (STI)¹

Associated with STI syndromes: urethritis, cervicitis, pelvic inflammatory disease (PID)^{1,2}

Sequelae include miscarriage, preterm birth, infertility^{1,2}

[1] Jensen, J.S. & Bradshaw, C. (2015). Management of *Mycoplasma genitalium* infections – can we hit a moving target? *BMC Infect Dis* 15(343)

[2] Htaik, K., et al., (2024). Systematic review and meta-analysis of the association between *Mycoplasma genitalium* and pelvic inflammatory disease (PID). *Clin Infect Dis*

Mycoplasma genitalium (MG)

Bacterial sexually transmitted infection (STI)¹

Associated with STI syndromes: urethritis, cervicitis, pelvic inflammatory disease (PID)^{1,2}

Sequelae include miscarriage, preterm birth, infertility^{1,2}

Highly mutable genome conferring antimicrobial resistance

Macrolide-resistance mutation (MRM) now present in >65% of MG infections in Australia, >80% among men-who-have-sex-with-men³

[1] Jensen, J.S. & Bradshaw, C. (2015). Management of *Mycoplasma genitalium* infections – can we hit a moving target? *BMC Infect Dis* 15(343)

[2] Htaik, K., et al., (2024). Systematic review and meta-analysis of the association between *Mycoplasma genitalium* and pelvic inflammatory disease (PID). *Clin Infect Dis*

[3] Machalek, D.A., et al., (2020). Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in *Mycoplasma genitalium*: a systematic review and meta-analysis. *Lancet Infect Dis*. 20(11)

Moxifloxacin

Fluoroquinolone antibiotic

Introduced for MG in 2006 in response to azithromycin failure

Dual binding: DNA Topoisomerase IV and DNA Gyrase

ParC, ParE and GyrA, GyrB subunits

Moxifloxacin

Fluoroquinolone antibiotic

Introduced for MG in 2006 in response to azithromycin failure

Dual binding: DNA Topoisomerase IV and DNA Gyrase

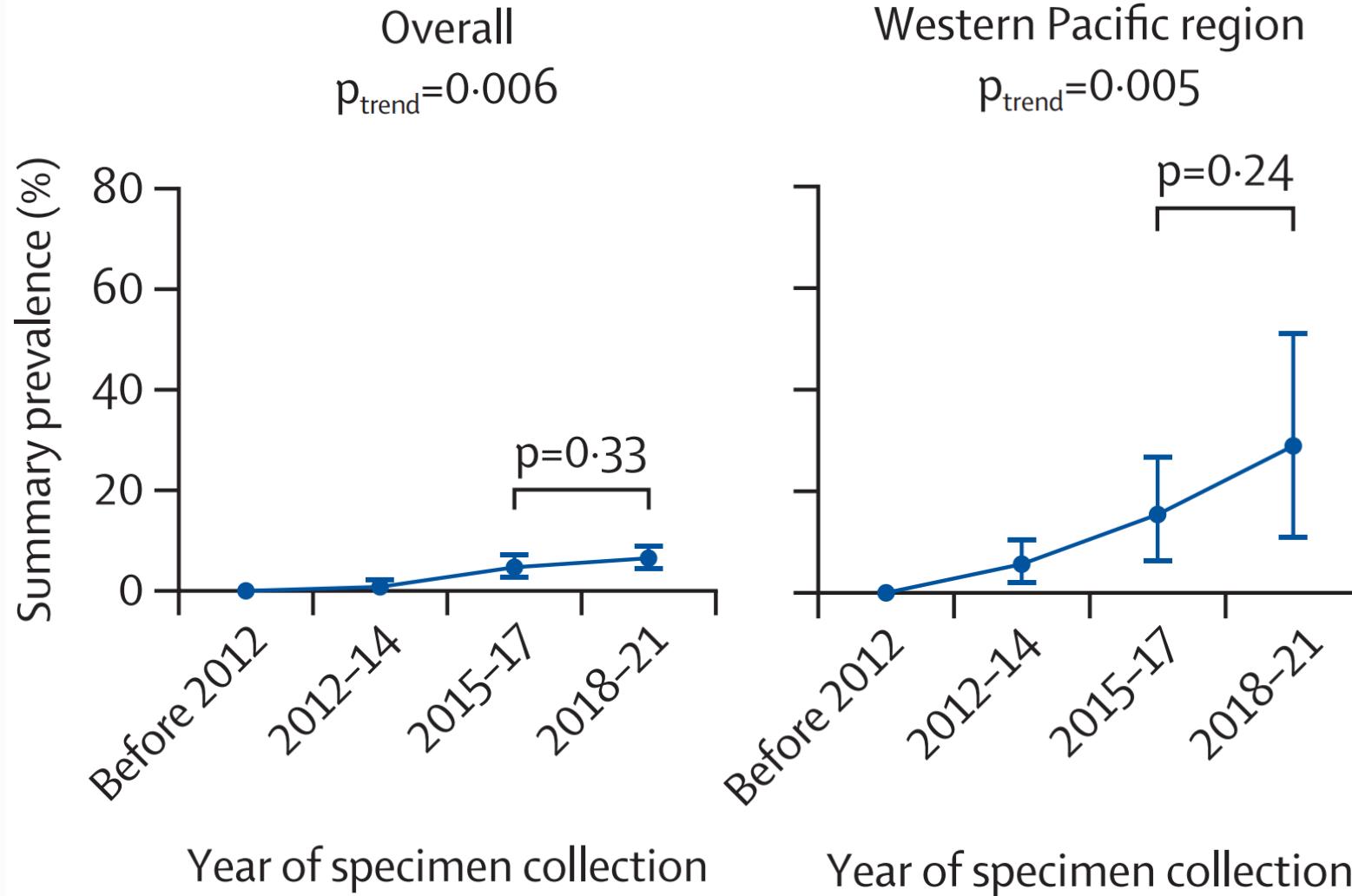
ParC, ParE and GyrA, GyrB subunits

Only one systematic review of moxifloxacin efficacy for MG⁴

100% pre-2010

89% post-2010

Fluoroquinolone-resistant MG

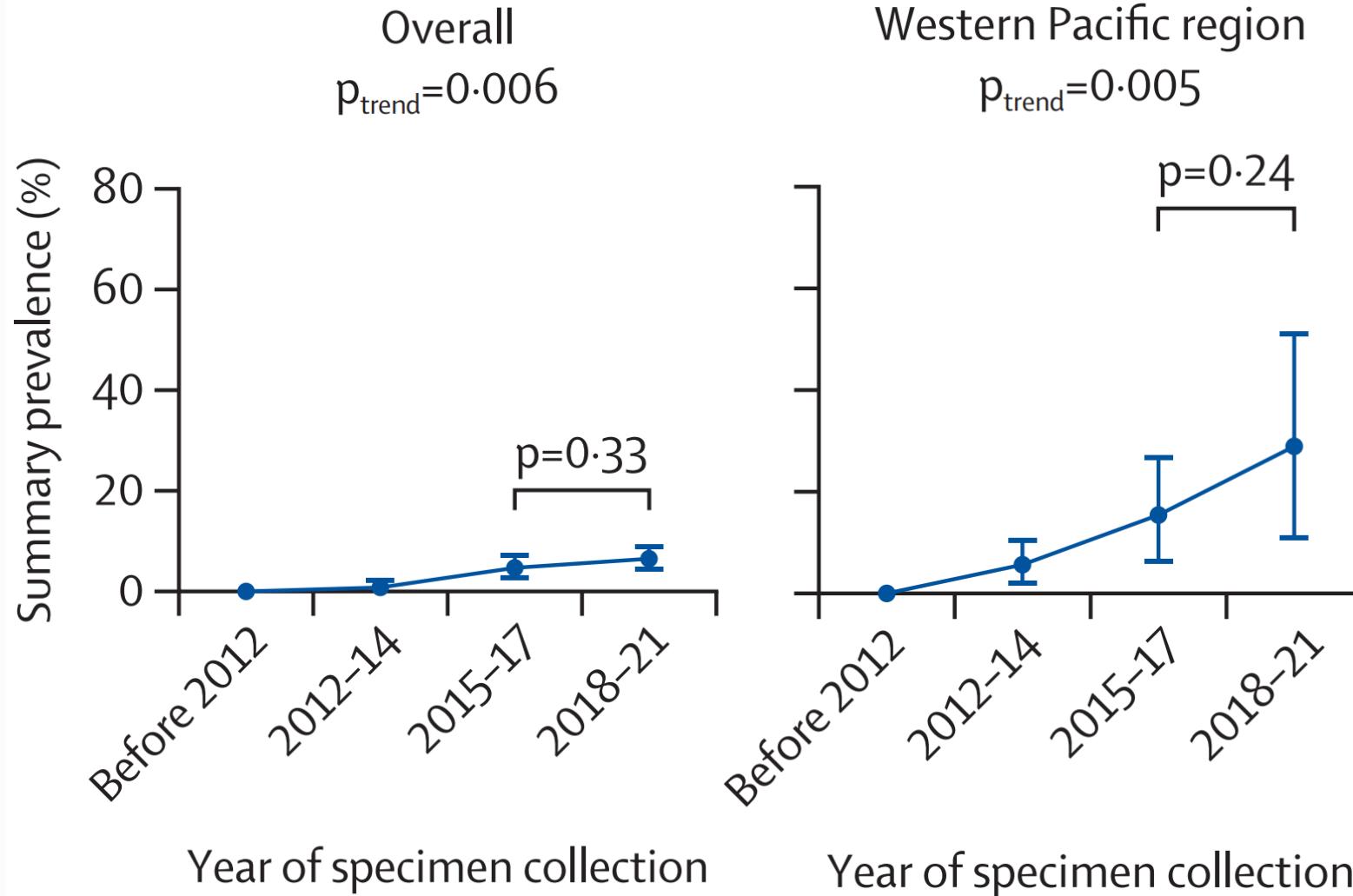

Number of mutations identified in *parC* (TopoIV) and *gyrA* (Gyr) genes

parC G248T mutation conferring **ParC S83I phenotype** most common

Clinical study found **ParC S83I** associated with 60% moxifloxacin failure⁵

Prevalence of dual MRM & ParC mutation

Chua, 2025⁶



WHO Western Pacific region global hotspot for ParC and dual-class mutation

29% carrying dual-class mutation (2018-21)

Prevalence of dual MRM & ParC mutation

Chua, 2025⁶

WHO Western Pacific region global hotspot for ParC and dual-class mutation

29% carrying dual-class mutation (2018-21)

We need more longitudinal data & drug surveillance

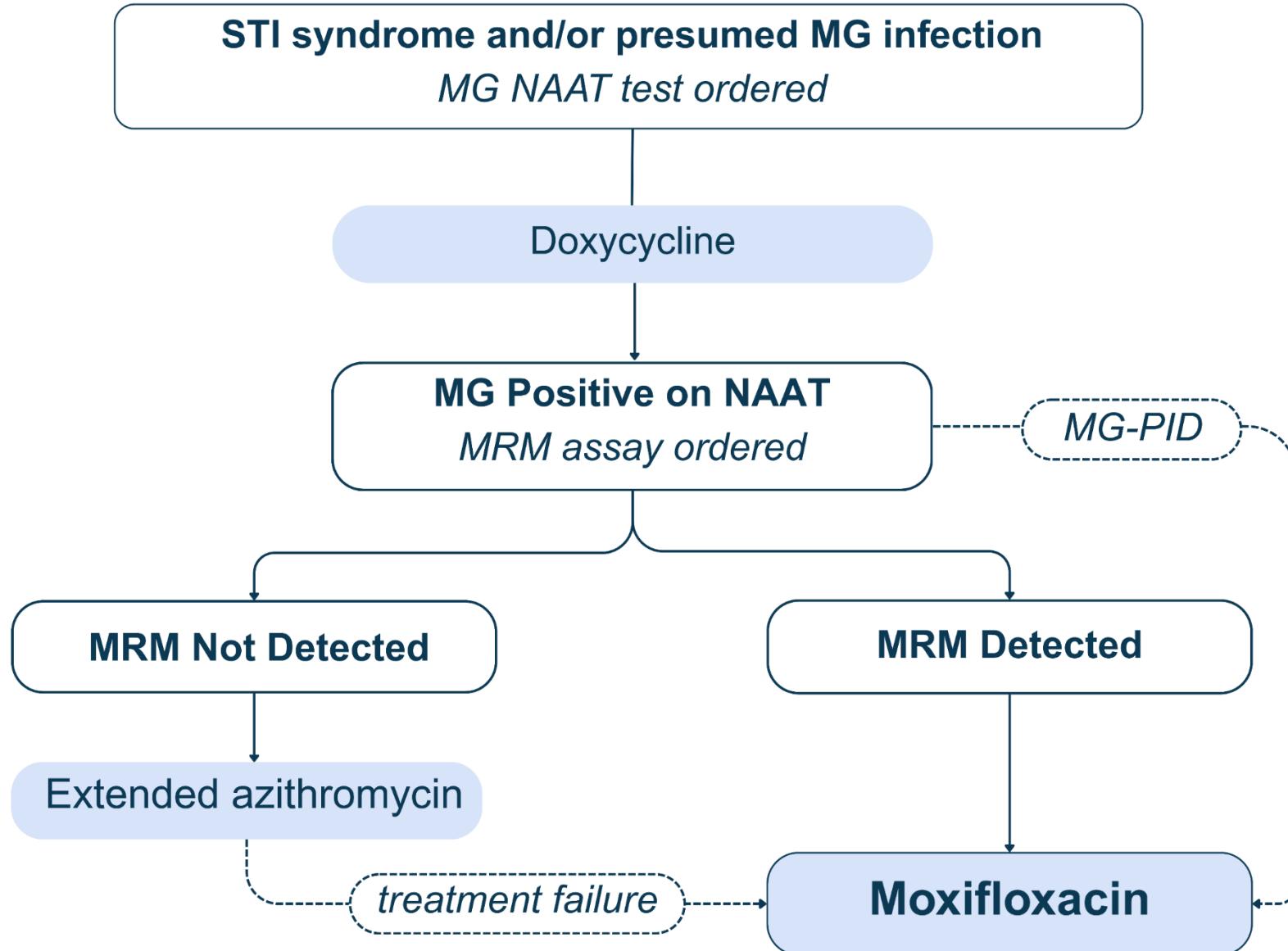
Aims

**Examine trends in the use and efficacy of moxifloxacin for MG infection
at Melbourne Sexual Health Centre (MSHC) from 2015–2024**

Secondary aims:

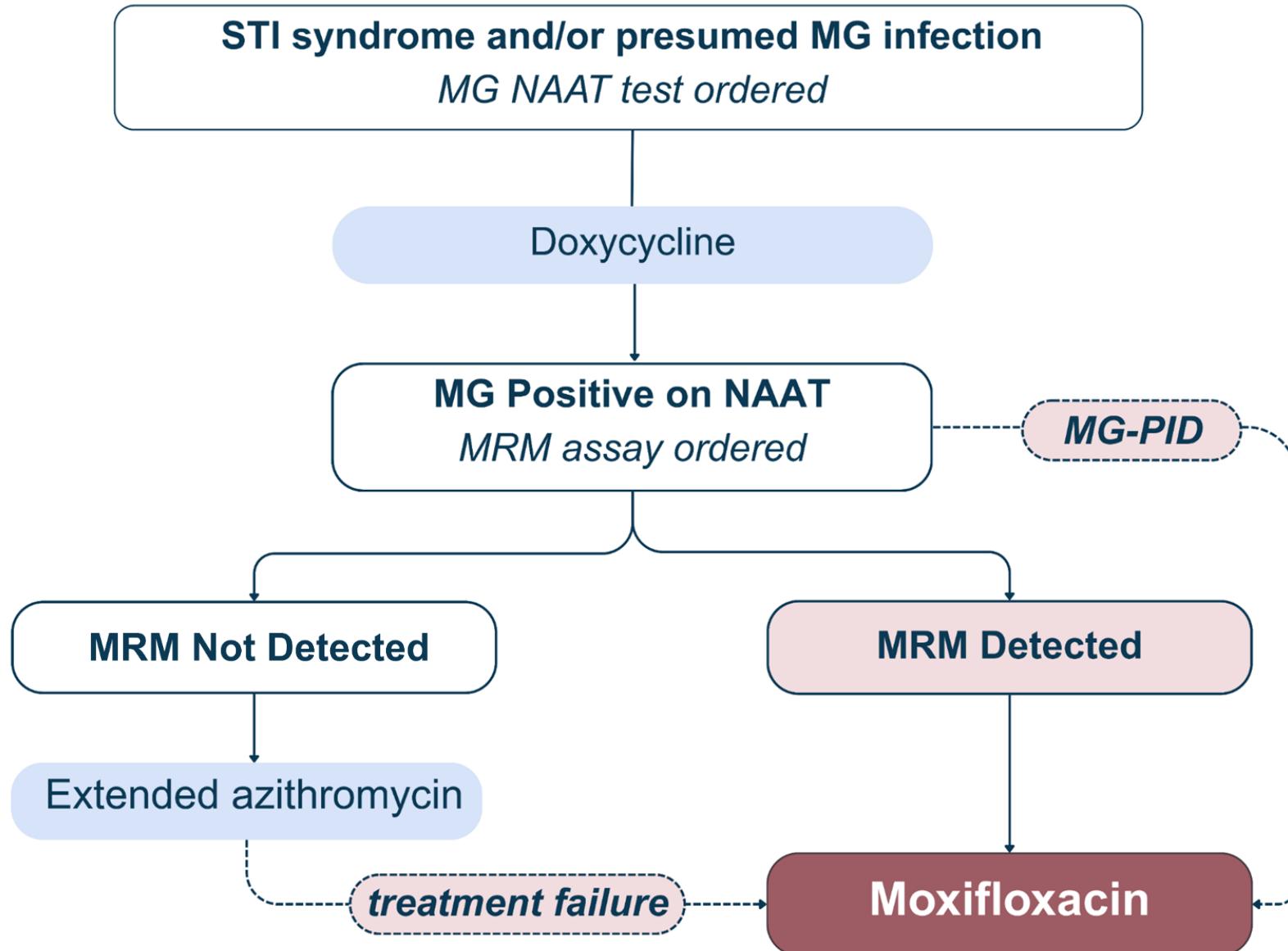
- Assess moxifloxacin efficacy by site of infection and coinfection status
- Assess the impact of MSHC's introduction of ParC assay on moxifloxacin use and efficacy

The Study


Retrospective audit of every MG infection diagnosed and managed at MSHC from 2015-2024

Large, urban sexual health service

Extraction of epidemiological, clinical, treatment data from electronic client records


Ethics Approval - Alfred Hospital Ethics Committee 232/16

Resistance-Guided Therapy (RGT)

NAAT: nucleic acid amplification test
MRM: macrolide-resistance mutation
PID: pelvic inflammatory disease

Resistance-Guided Therapy (RGT)

NAAT: nucleic acid amplification test
MRM: macrolide-resistance mutation
PID: pelvic inflammatory disease

MRM+ 7 days
MG-PID 14 days

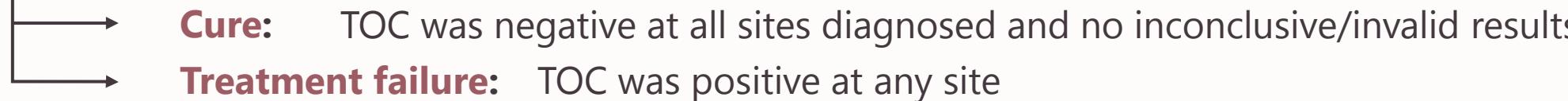
Outcomes

Eligible for use analyses

- MG diagnosed at MSHC 2015 – 2024
- Received moxifloxacin from MSHC pharmacy within 14 days of diagnosis or failed azithromycin
- No prior fluoroquinolone/minocycline/pristinamycin treatment for same infection

Eligible for efficacy analyses

- Treated with moxifloxacin *(as above)*
- Test of cure (TOC) at MSHC 14-90 days after completion of moxifloxacin
- Conclusive treatment outcome


Outcomes

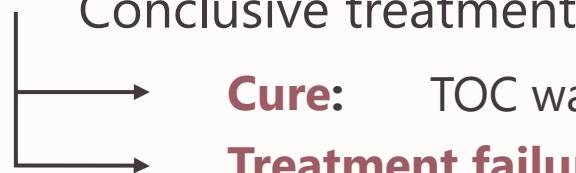
Eligible for use analyses

- MG diagnosed at MSHC 2015 – 2024
- Received moxifloxacin from MSHC pharmacy within 14 days of diagnosis or failed azithromycin
- No prior fluoroquinolone/minocycline/pristinamycin treatment for same infection

Eligible for efficacy analyses

- Treated with moxifloxacin (*as above*)
- Test of cure (TOC) at MSHC 14-90 days after completion of moxifloxacin
Conclusive treatment outcome

- **Cure:** TOC was negative at all sites diagnosed and no inconclusive/invalid results
- **Treatment failure:** TOC was positive at any site


Outcomes

Eligible for use analyses

- MG diagnosed at MSHC 2015 – 2024
- Received moxifloxacin from MSHC pharmacy within 14 days of diagnosis or failed azithromycin
- No prior fluoroquinolone/minocycline/pristinamycin treatment for same infection

Eligible for efficacy analyses

- Treated with moxifloxacin (*as above*)
- Test of cure (TOC) at MSHC 14-90 days after completion of moxifloxacin
Conclusive treatment outcome

- **Cure:** TOC was negative at all sites diagnosed and no inconclusive/invalid results
- **Treatment failure:** TOC was positive at any site

Ineligible for efficacy analyses

- Did not return for TOC, returned outside of 14-90-day window, or TOC inconclusive
- Reported taking <50% prescribed doses of moxifloxacin (incomplete treatment)
- Clients reported condomless sex with an untreated ongoing partner (high risk of reinfection)

Overview of study population

5,739 MG infections diagnosed
in 5,430 clients

2,611 moxifloxacin regimens
eligible for 'use' analyses
in 2,523 clients

1,623 moxifloxacin regimens
eligible for 'efficacy' analyses
in 1,586 clients

3128 ineligible for use analyses
didn't receive moxifloxacin (2,891),
ineligible moxifloxacin regimen (237)

988 ineligible for efficacy analyses
No TOC (545), TOC outside of 14–90-
day window (283), TOC inconclusive
(16), incomplete treatment (21), high
risk of reinfection (123)

Overview of study population

5,739 MG infections diagnosed
in 5,430 clients

**2,611 moxifloxacin regimens
eligible for 'use' analyses**
in 2,523 clients

**1,623 moxifloxacin regimens
eligible for 'efficacy' analyses**
in 1,586 clients

3128 ineligible for use analyses
didn't receive moxifloxacin (2,891),
ineligible moxifloxacin regimen (237)

988 ineligible for efficacy analyses
No TOC (545), TOC outside of 14–90-
day window (283), TOC inconclusive
(16), incomplete treatment (21), high
risk of reinfection (123)

Overview of study population

5,739 MG infections diagnosed
in 5,430 clients

**2,611 moxifloxacin regimens
eligible for 'use' analyses**
in 2,523 clients

**1,623 moxifloxacin regimens
eligible for 'efficacy' analyses**
in 1,586 clients

3128 ineligible for use analyses
didn't receive moxifloxacin (2,891),
ineligible moxifloxacin regimen (237)

988 ineligible for efficacy analyses
No TOC (545), TOC outside of 14–90-
day window (283), TOC inconclusive
(16), incomplete treatment (21), high
risk of reinfection (123)

Overview of study population

5,739 MG infections diagnosed
in 5,430 clients

**2,611 moxifloxacin regimens
eligible for 'use' analyses**
in 2,523 clients

**1,623 moxifloxacin regimens
eligible for 'efficacy' analyses**
in 1,586 clients

3128 ineligible for use analyses
didn't receive moxifloxacin (2,891),
ineligible moxifloxacin regimen (237)

988 ineligible for efficacy analyses
No TOC (545), TOC outside of 14–90-
day window (283), TOC inconclusive
(16), incomplete treatment (21), high
risk of reinfection (123)

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Age, median [range]	28 [16-69]	
People living with HIV	102 (3.91)	
Gender & Sexuality		
Cisgender women	863 (33.05)	
Cisgender men (no male partners)	633 (24.24)	
Cisgender men (male partners)	1043 (39.95)	
Gender Diverse people	72 (2.76)	
Site of Infection		
Urine/urethral	1565 (59.94)	
Cervicovaginal	699 (26.77)	
Anorectal	322 (12.33)	
Multisite (anorectal + another)	25 (0.96)	

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Age, median [range]	28 [16-69]	
People living with HIV	102 (3.91)	
Gender & Sexuality		
Cisgender women	863 (33.05)	
Cisgender men (no male partners)	633 (24.24)	
Cisgender men (male partners)	1043 (39.95)	
Gender Diverse people	72 (2.76)	
Site of Infection		
Urine/urethral	1565 (59.94)	
Cervicovaginal	699 (26.77)	
Anorectal	322 (12.33)	
Multisite (anorectal + another)	25 (0.96)	

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Age, median [range]	28 [16-69]	
People living with HIV	102 (3.91)	
Gender & Sexuality		
Cisgender women	863 (33.05)	
Cisgender men (no male partners)	633 (24.24)	
Cisgender men (male partners)	1043 (39.95)	
Gender Diverse people	72 (2.76)	
Site of Infection		
Urine/urethral	1565 (59.94)	
Cervicovaginal	699 (26.77)	
Anorectal	322 (12.33)	
Multisite (anorectal + another)	25 (0.96)	

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Age, median [range]	28 [16-69]	
People living with HIV	102 (3.91)	
Gender & Sexuality		
Cisgender women	863 (33.05)	
Cisgender men (no male partners)	633 (24.24)	
Cisgender men (male partners)	1043 (39.95)	
Gender Diverse people	72 (2.76)	
Site of Infection		
Urine/urethral	1565 (59.94)	
Cervicovaginal	699 (26.77)	
Anorectal	322 (12.33)	
Multisite (anorectal + another)	25 (0.96)	

*significantly ($p<0.05$) higher in infections receiving moxifloxacin compared to total study population (36% MSM and 1.5% GD)

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Indication for Moxifloxacin		
MRM+ detected	2,236 (85.64)	
Failed azithromycin	144 (5.52)	
MG-PID	231 (8.85)	
Moxifloxacin Duration (days)		
7	2,312 (88.55)	
10*	56 (2.14)	
14	243 (9.31)	

**period in 2015/16 where 10-day regimen was used instead of 7-day*

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Indication for Moxifloxacin		
MRM+ detected	2,236 (85.64)	
Failed azithromycin	144 (5.52)	
MG-PID	231 (8.85)	
Moxifloxacin Duration (days)		
7	2,312 (88.55)	
10*	56 (2.14)	
14	243 (9.31)	

**period in 2015/16 where 10-day regimen was used instead of 7-day*

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Indication for Moxifloxacin		
MRM+ detected	2,236 (85.64)	
Failed azithromycin	144 (5.52)	
MG-PID	231 (8.85)	
Moxifloxacin Duration (days)		
7	2,312 (88.55)	
10	56 (2.14)	
14	243 (9.31)	
CT/NG Coinfection		
Neither detected	2263 (86.67)	
CT detected	205 (7.85)	
NG detected	109 (4.17)	
CT+NG detected	34 (1.30)	
BV Coinfection (N = 1124, 59% of women)		
BV detected (Nugent's \geq 7)	407 (36.21)	
BV not detected (Nugent's <7)	717 (63.79)	

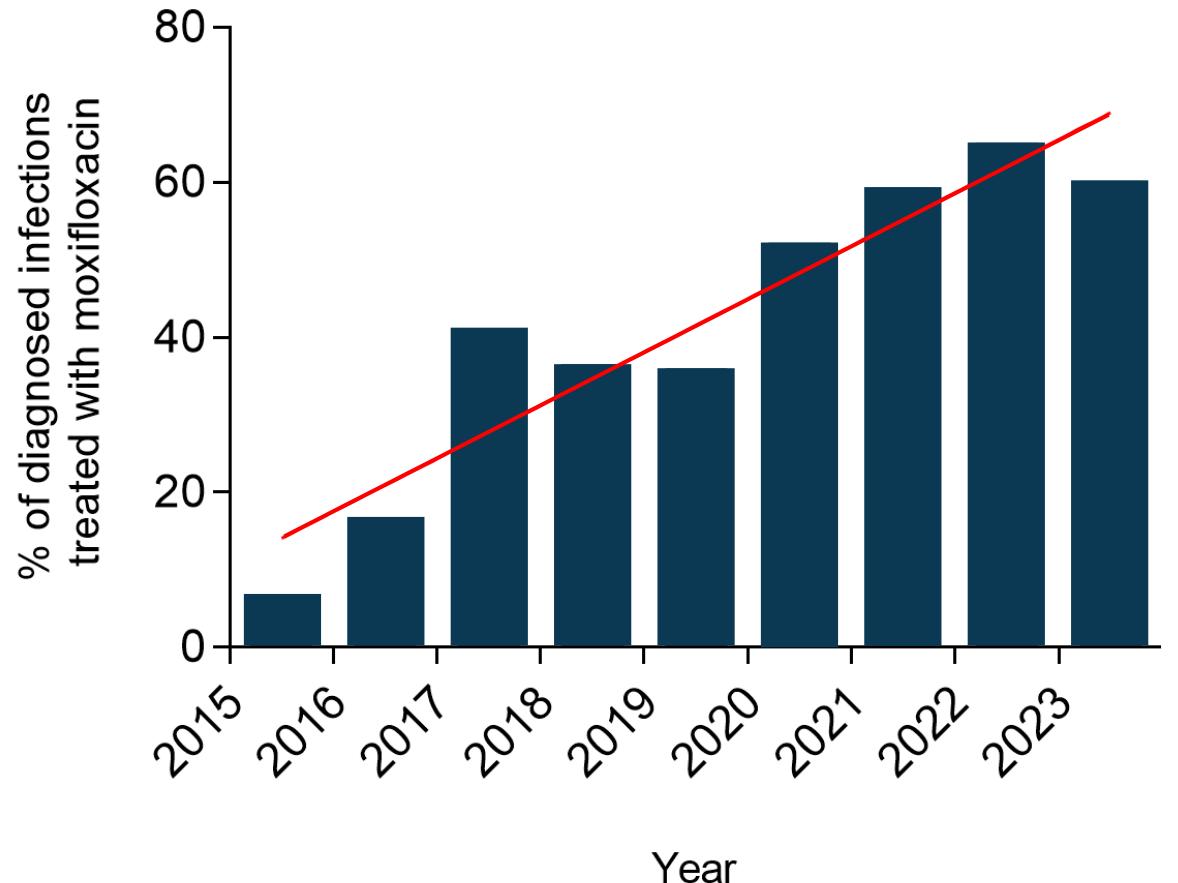
CT: *Chlamydia trachomatis*

NG: *Neisseria gonorrhoeae*

BV: Bacterial vaginosis

Characteristics of moxifloxacin-treated population

Characteristic	n (%)	N=2611
Indication for Moxifloxacin		
MRM+ detected	2,236 (85.64)	
Failed azithromycin	144 (5.52)	
MG-PID	231 (8.85)	
Moxifloxacin Duration (days)		
7	2,312 (88.55)	
10	56 (2.14)	
14	243 (9.31)	
CT/NG Coinfection		
Neither detected	2263 (86.67)	
CT detected	205 (7.85)	
NG detected	109 (4.17)	
CT+NG detected	34 (1.30)	
BV Coinfection (N = 1124, 59% of women)		
BV detected (Nugent's \geq 7)	407 (36.21)	
BV not detected (Nugent's <7)	717 (63.79)	


CT: *Chlamydia trachomatis*

NG: *Neisseria gonorrhoeae*

BV: Bacterial vaginosis

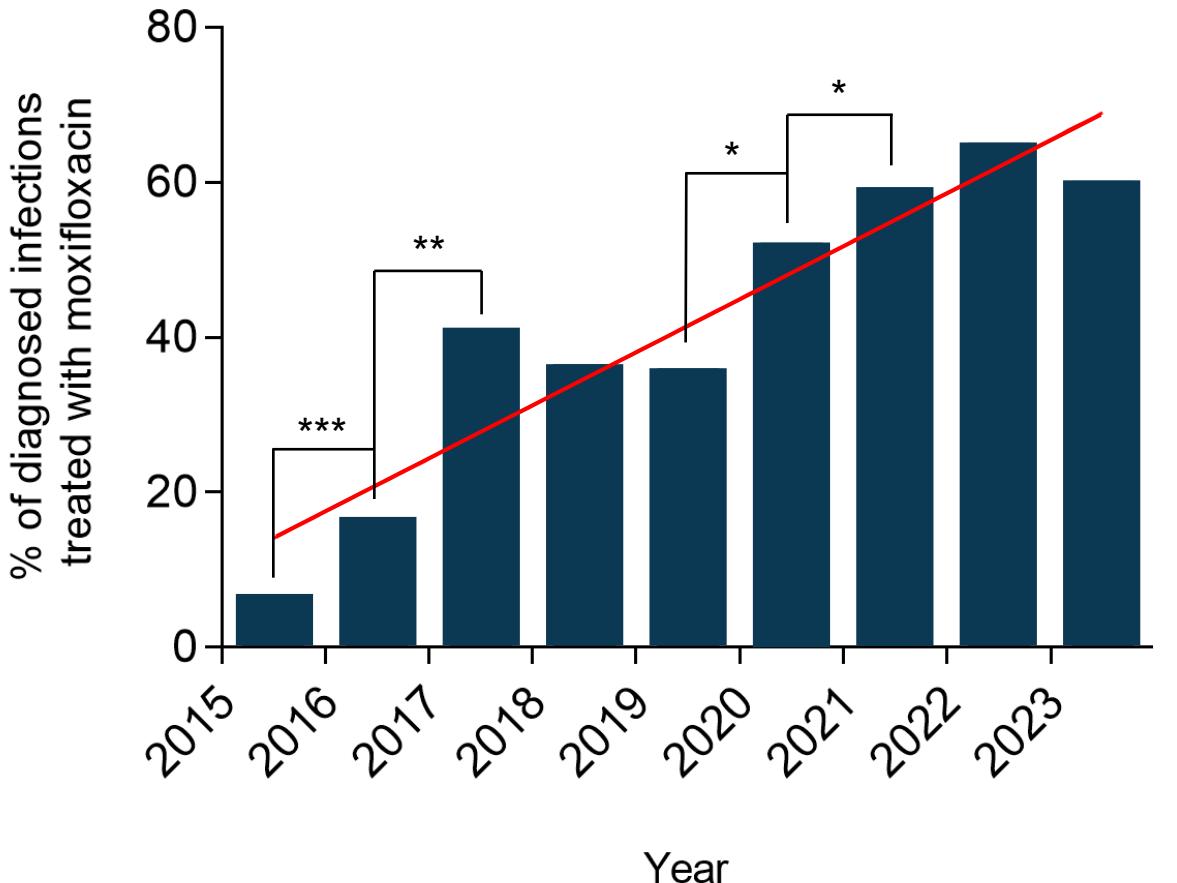
Moxifloxacin use by year, 2015-2023

Year	n regimens / N diagnoses	Use, % [95% CI]
2015	19/282	6.74 [4.10-10.32]
2016	72/433	16.63 [13.24-20.48]
2017	204/496	41.13 [36.76-45.60]
2018	263/719	36.58 [33.05-40.22]
2019	222/616	36.04 [32.24-39.97]
2020	255/488	52.25 [47.72-56.76]
2021	269/453	59.38 [54.70-63.94]
2022	368/565	65.13 [61.04-69.06]
2023	482/800	60.25 [56.76-63.66]
TOTAL	2,154/4,852	44.39 [42.99-45.81]

$p_{trend} <0.0001$

— line of best fit

Year-on-year changes to moxifloxacin use


Year	n regimens / N diagnoses	Use, % [95% CI]
2015	19/282	6.74 [4.10-10.32]
2016 ***	72/433	16.63 [13.24-20.48]
2017 **	204/496	41.13 [36.76-45.60]
2018	263/719	36.58 [33.05-40.22]
2019	222/616	36.04 [32.24-39.97]
2020 *	255/488	52.25 [47.72-56.76]
2021 *	269/453	59.38 [54.70-63.94]
2022	368/565	65.13 [61.04-69.06]
2023	482/800	60.25 [56.76-63.66]
TOTAL	2,154/4,852	44.39 [42.99-45.81]

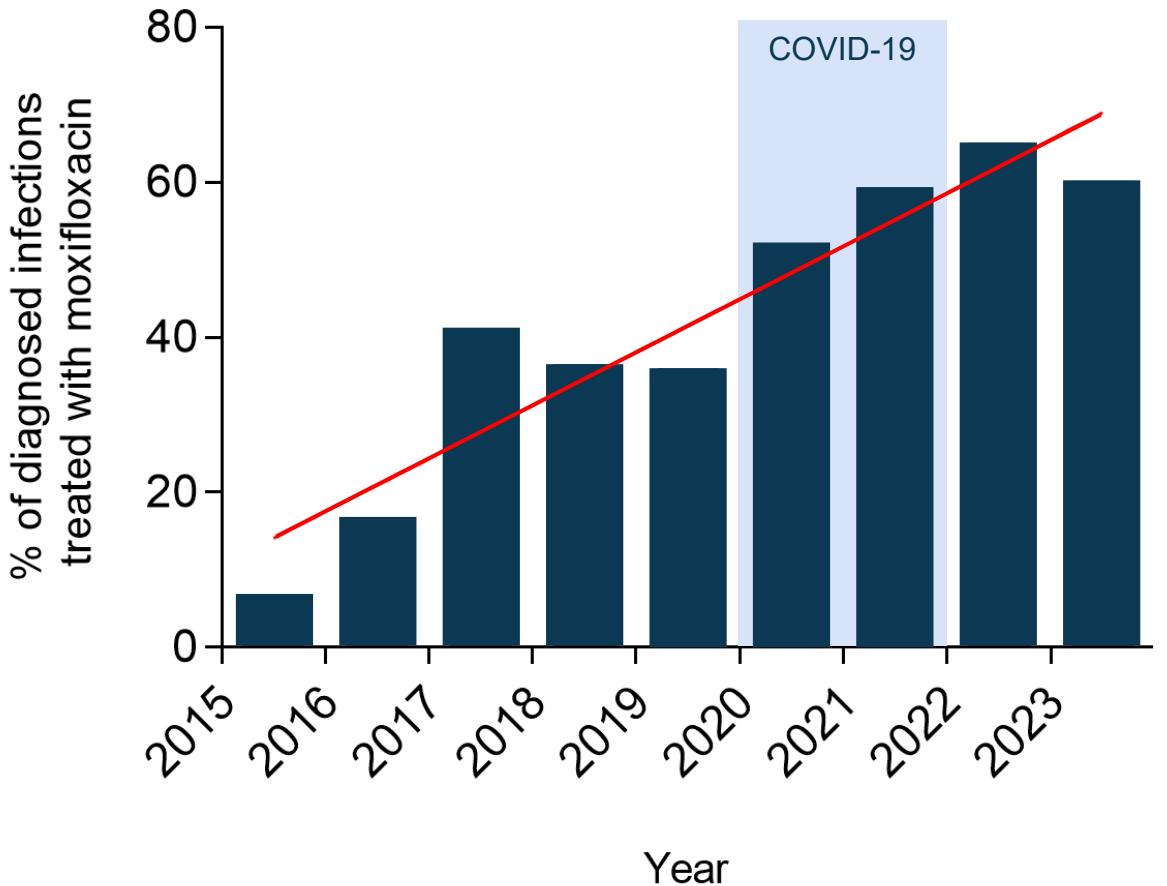
Significant increase from year prior

* $p<0.05$

** $p<0.01$

*** $p<0.0001$

— line of best fit

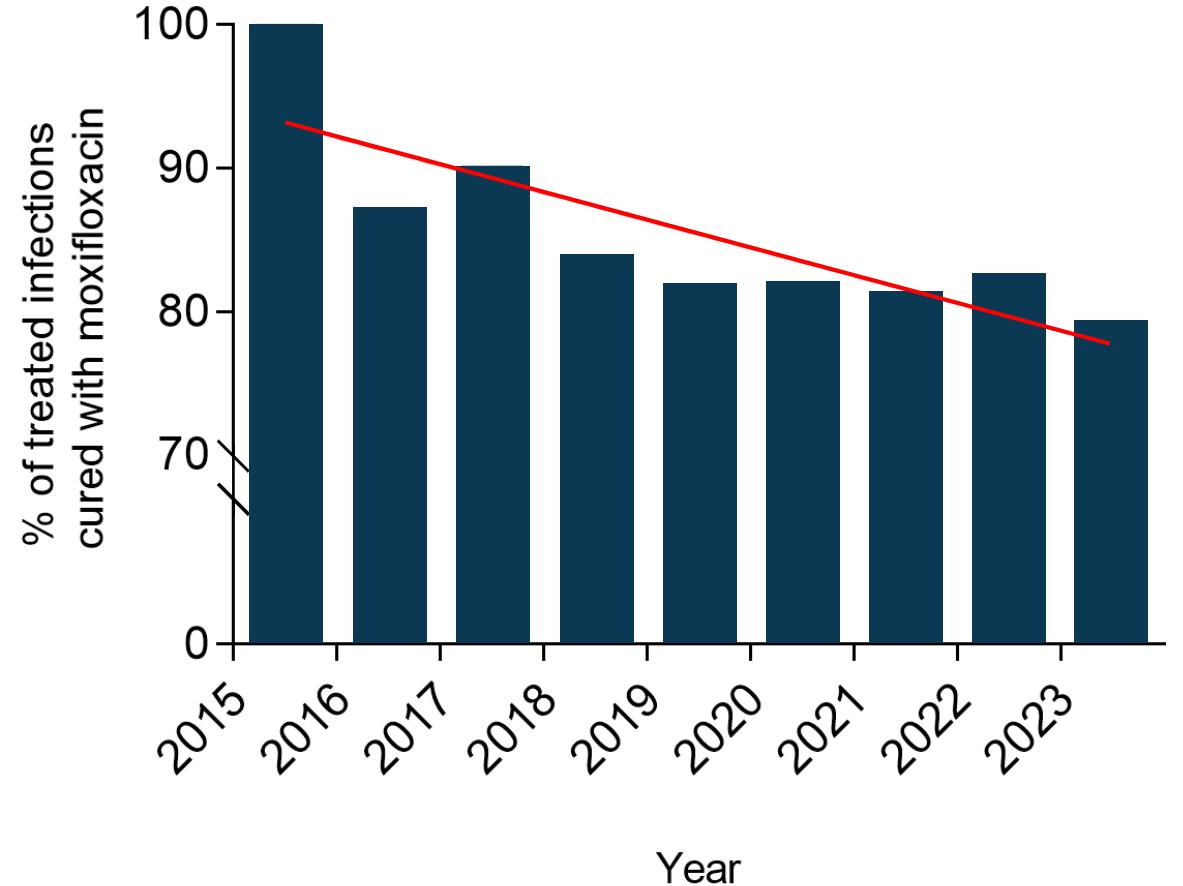

Effects of COVID-19

Year	n regimens / N diagnoses	Use, % [95% CI]
2015	19/282	6.74 [4.10-10.32]
2016	72/433	16.63 [13.24-20.48]
2017	204/496	41.13 [36.76-45.60]
2018	263/719	36.58 [33.05-40.22]
2019	222/616	36.04 [32.24-39.97]
2020	255/488	52.25 [47.72-56.76]
2021	269/453	59.38 [54.70-63.94]
2022	368/565	65.13 [61.04-69.06]
2023	482/800	60.25 [56.76-63.66]
TOTAL	2,154/4,852	44.39 [42.99-45.81]

MG diagnoses reduced during COVID-19

Effects of COVID-19

Year	n regimens / N diagnoses	Use, % [95% CI]
2015	19/282	6.74 [4.10-10.32]
2016	72/433	16.63 [13.24-20.48]
2017	204/496	41.13 [36.76-45.60]
2018	263/719	36.58 [33.05-40.22]
2019	222/616	36.04 [32.24-39.97]
2020	255/488	52.25 [47.72-56.76]
2021	269/453	59.38 [54.70-63.94]
2022	368/565	65.13 [61.04-69.06]
2023	482/800	60.25 [56.76-63.66]
TOTAL	2,154/4,852	44.39 [42.99-45.81]

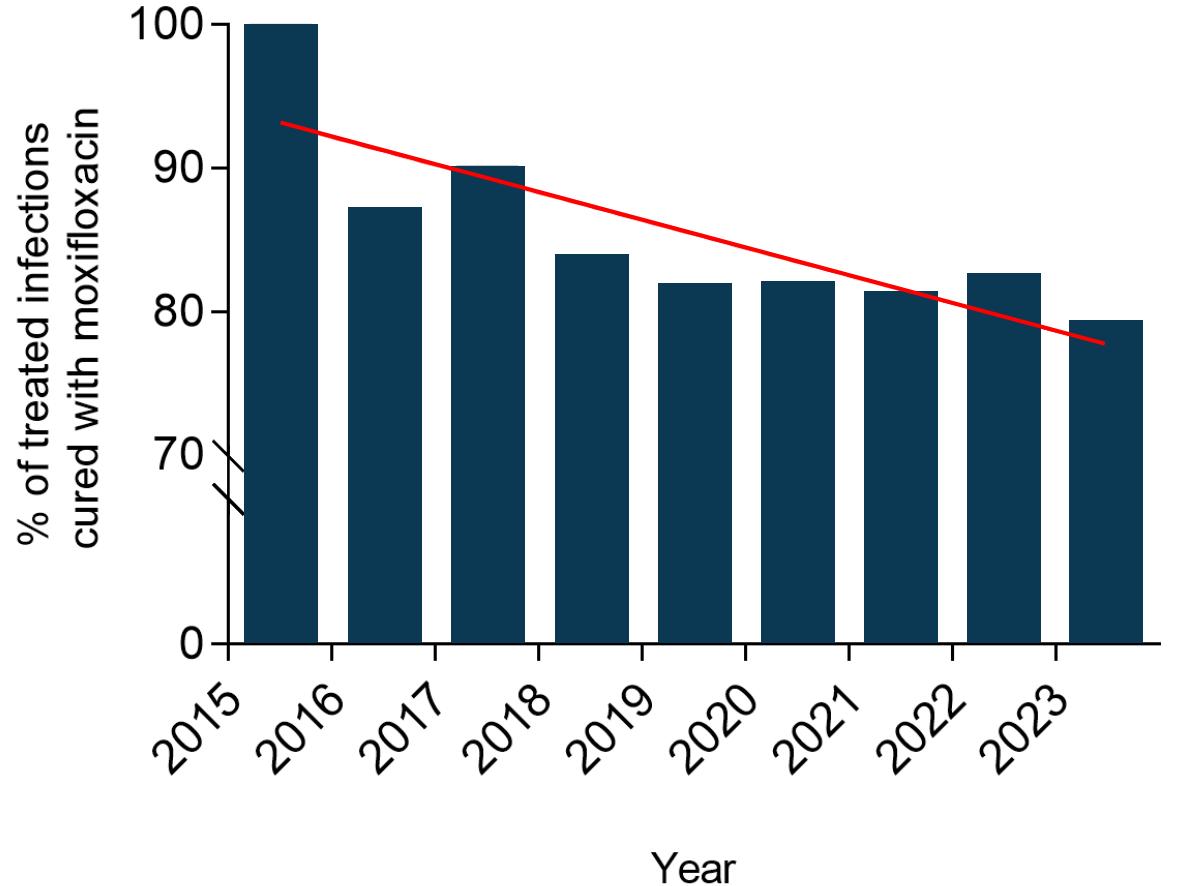


MG diagnoses reduced during COVID-19

— line of best fit

Moxifloxacin efficacy by year, 2015-2023

Year	n cures / N eligible regimens	Efficacy, % [95% CI]
2015	11/11	100 [71.51-100]
2016	34/39	87.18 [72.57-95.70]
2017	110/122	90.16 [83.45-94.81]
2018	141/168	83.93 [77.49-89.13]
2019	116/140	81.86 [75.58-88.70]
2020	142/173	82.08 [75.54-87.49]
2021	144/177	81.36 [74.83-86.81]
2022	190/230	82.61 [77.08-87.28]
2023	238/300	79.33 [74.30-83.77]
TOTAL	1,126/1,360	82.79 [80.68-84.76]


$p_{trend} <0.005$

No significant increase in LTFU
($p>0.05$)

— line of best fit

Moxifloxacin efficacy by year, 2015-2023

Year	n cures / N eligible regimens	Efficacy, % [95% CI]
2015	11/11	100 [71.51-100]
2016	34/39	87.18 [72.57-95.70]
2017	110/122	90.16 [83.45-94.81]
2018	141/168	83.93 [77.49-89.13]
2019	116/140	81.86 [75.58-88.70]
2020	142/173	82.08 [75.54-87.49]
2021	144/177	81.36 [74.83-86.81]
2022	190/230	82.61 [77.08-87.28]
2023	238/300	79.33 [74.30-83.77]
TOTAL	1,126/1,360	82.79 [80.68-84.76]

$p_{trend} <0.005$

No significant increase in LTFU
($p>0.05$)

— line of best fit

Introduction of ParC Assay, 2024

In early 2024, ParC PCR resistance assay introduced to MSHC practice

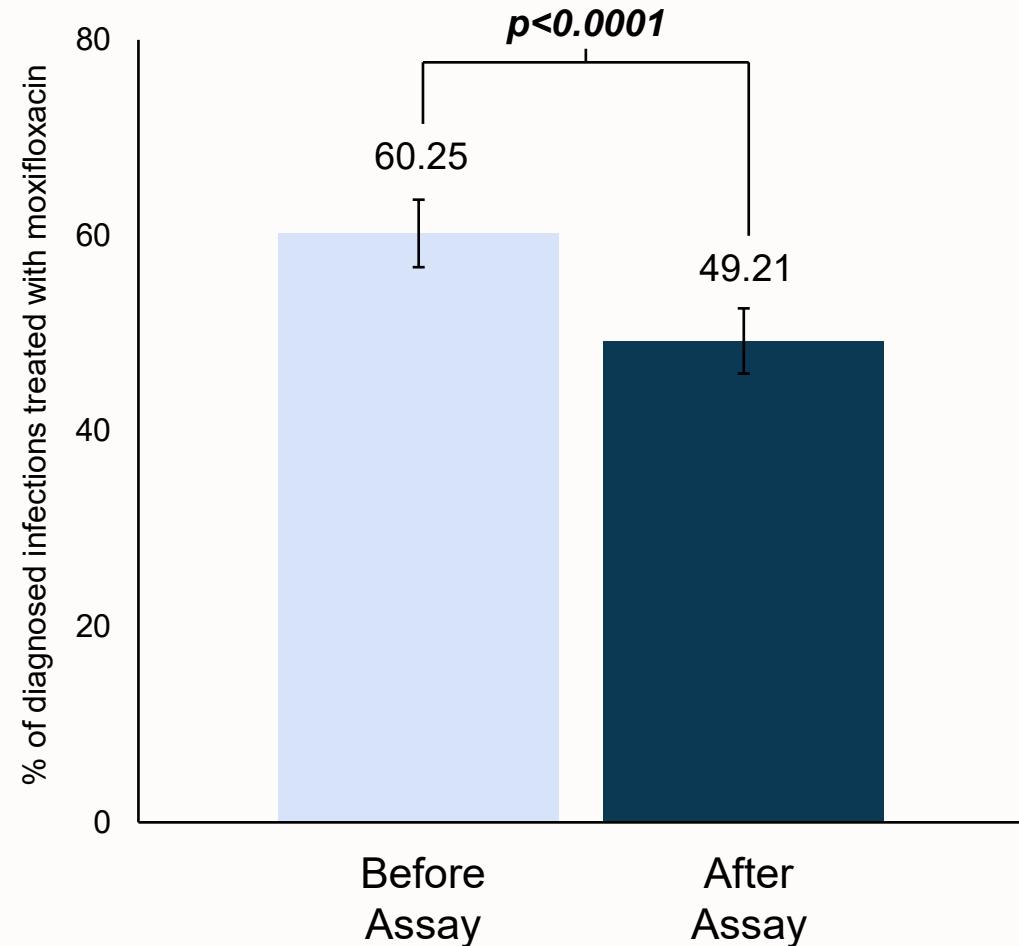
All MRM+ samples undergo assay

Assay targets: **ParC S83** (wildtype) and **ParC S83I** (mutant)

Introduction of ParC Assay, 2024

In early 2024, ParC PCR resistance assay introduced to MSHC practice

All MRM+ samples undergo assay

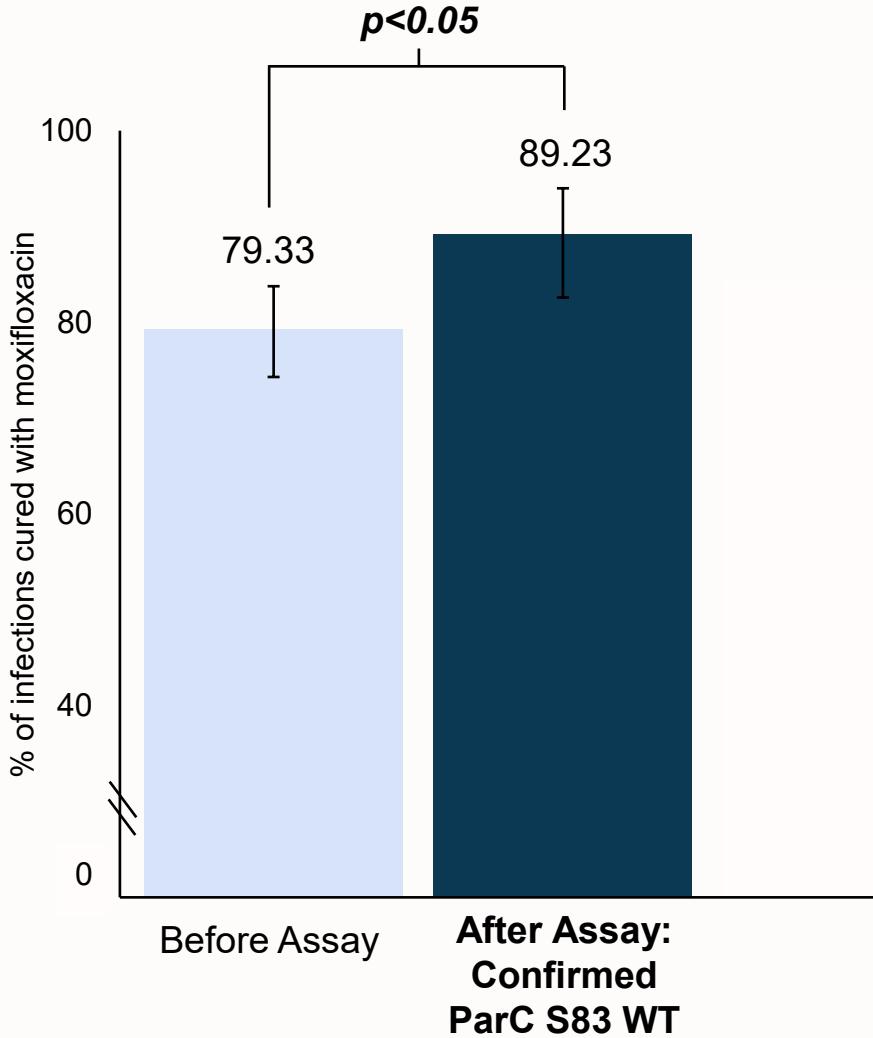

Assay targets: **ParC S83** (wildtype) and **ParC S83I** (mutant)

Assay result	Interpretation	Curative antibiotics
ParC S83I mutant	Reduced susceptibility to moxifloxacin	Metronidazole + Minocycline <i>OR</i> Sitaflloxacin
ParC S83 wildtype	susceptible to moxifloxacin	Moxifloxacin
No result	below limit of detection of assay, or another mutation (e.g. S83R) detected	
Invalid test	assay unable to be performed (<i>i.e.</i> due to inhibition or sample contamination)	

Moxifloxacin use after introduction of ParC assay

	n regimens / N diagnoses	Use, % [95% CI]
Before Assay	482/800	60.25 [56.76–63.66]
After Assay*	438/890	49.21 [45.88-52.55]

p < 0.0001



*1 May 2024 – 1 May 2025, accounting for roll-out period

Moxifloxacin efficacy after introduction of ParC assay

	n cured / N eligible regimens	Efficacy, % [95% CI]
Before Assay	238/300	79.33 [74.30–83.77]
After Assay: ParC S83 WT infections	116/130	89.23 [82.59-93.99]

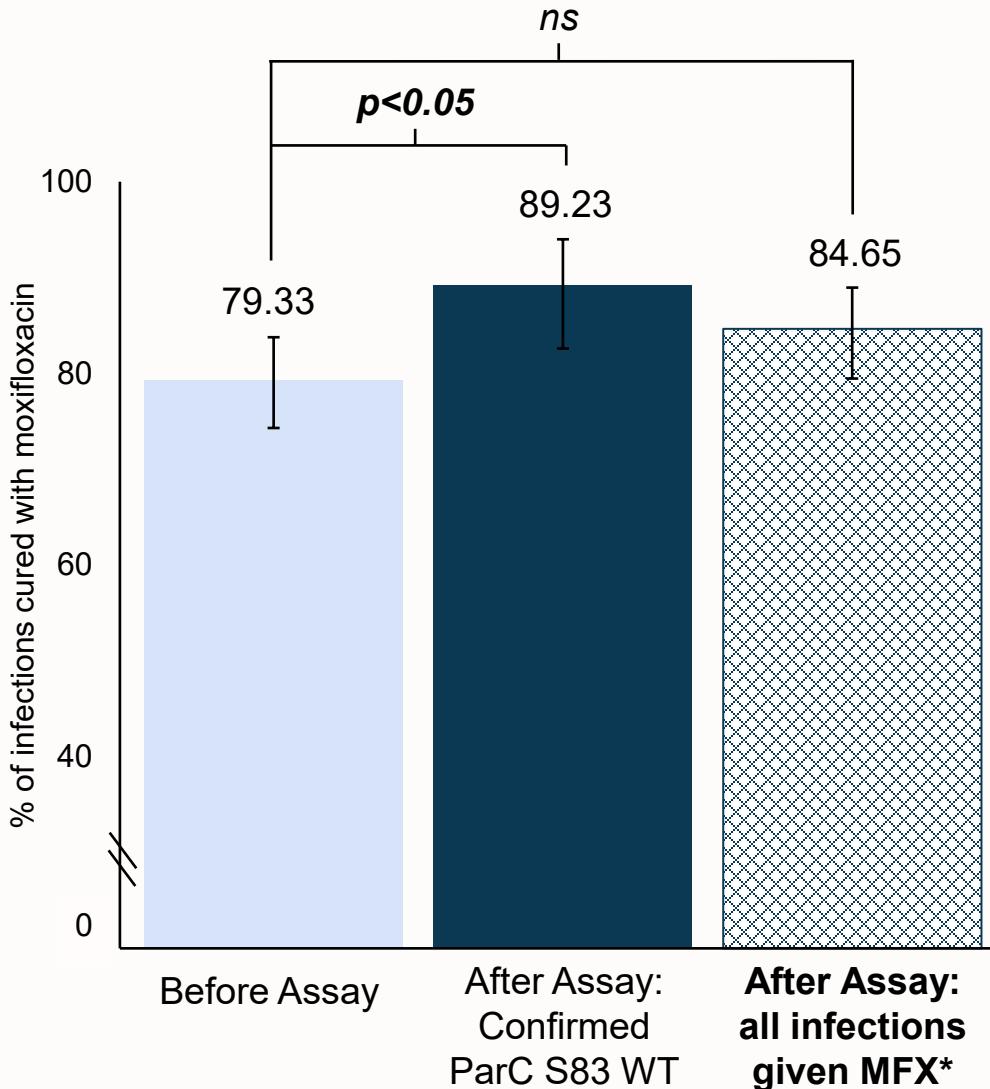
***p* = 0.013**

Infections treated with moxifloxacin, by ParC result

Assay Result	Number of infections treated with moxifloxacin, n		Efficacy, % [95% CI] N=241
ParC S83 WT	130		89.23 [82.59-93.99]
No result	63		80.95 [69.09-89.75]
Invalid test	19		68.42 [43.45-87.42]
ParC assay not performed (no MRM+ result)	29		82.76 [64.23-94.15]

Only **54%** of moxifloxacin-treated infections
were **confirmed** ParC S83 wildtype

Infections treated with moxifloxacin, by ParC result

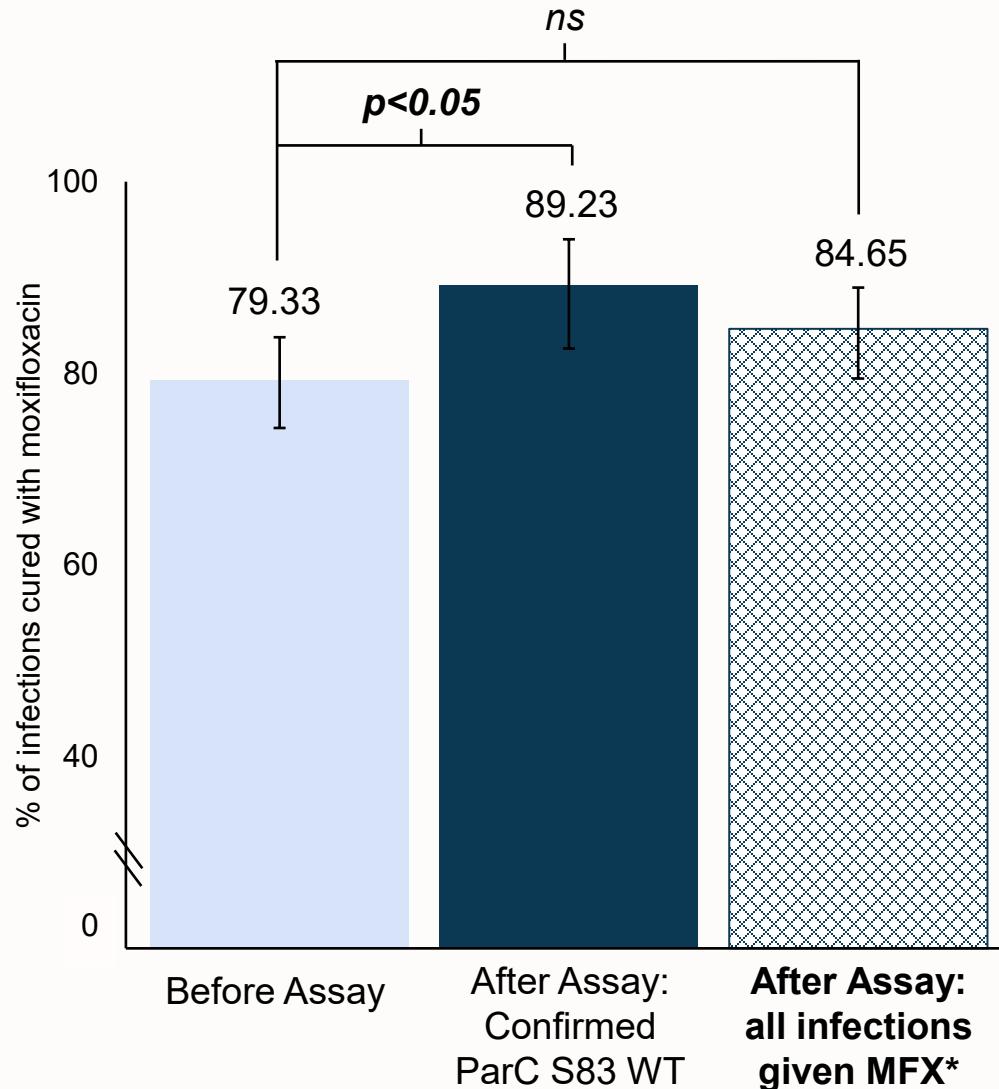

Assay Result	Number of infections treated with moxifloxacin, n		Efficacy, % [95% CI]
	N=241		
ParC S83 WT	130		89.23 [82.59-93.99]
No result	63		80.95 [69.09-89.75]
Invalid test	19		68.42 [43.45-87.42]
ParC assay not performed (no MRM+ result)	29		82.76 [64.23-94.15]

Only **54%** of moxifloxacin-treated infections
were **confirmed** ParC S83 wildtype

Moxifloxacin efficacy after introduction of ParC assay

	n cured / N eligible regimens	Efficacy, % [95% CI]
Before Assay	238/300	79.33 [74.30–83.77]
After Assay: ParC S83 WT infections	116/130	89.23 [82.59-93.99]
After Assay: all infections given MFX*	204/241	84.65 [79.46-88.95]

Overall moxifloxacin efficacy impacted by high proportion of infections with indeterminate ParC assay results, some of which would be resistant



*i.e. including ParC S83 WT, No Result, Invalid, MRM not detected

Moxifloxacin efficacy after introduction of ParC assay

	n cured / N eligible regimens	Efficacy, % [95% CI]
Before Assay	238/300	79.33 [74.30–83.77]
After Assay: ParC S83 WT infections	116/130	89.23 [82.59-93.99]
After Assay: all infections given MFX*	204/241	84.65 [79.46-88.95]

Loss to follow-up increased after assay introduction, from 38% to 45% ($p<0.05$) which likely impacted findings (selection bias for unresolved infections)

*i.e. including ParC S83 WT, No Result, Invalid, MRM not detected

Strengths

- Large sample size
- Longitudinal design
- First data for ParC resistance assay in clinical MG management

Strengths

- Large sample size
- Longitudinal design
- First data for ParC resistance assay in clinical MG management

Limitations

- No ParC data, 2015-2023
- Loss to follow up affecting efficacy estimates
- Population with high antimicrobial consumption, drug-resistant STIs

Strengths

- Large sample size
- Longitudinal design
- First data for ParC resistance assay in clinical MG management

Limitations

- No ParC data, 2015-2023
- Loss to follow up affecting efficacy estimates
- Population with high antimicrobial consumption, drug-resistant STIs
- More “no result” and “invalid” ParC results than anticipated
Low load infections, and differences in test sensitivity —→ ‘**resistance gap**’

In Summary: Trends in Moxifloxacin Use and Efficacy

Moxifloxacin now the most common curative antibiotic for MG at MSHC, surpassing azithromycin due to increasing MRM

Efficacy is in decline:

- 2023 estimate of 79% is lowest reported MFX efficacy from MSHC
- 2015-23 estimate of 83% lower than Li's meta-analysis (100% 2003-09, 89% 2010-17)

In Summary: Trends in Moxifloxacin Use and Efficacy

Moxifloxacin now the most common curative antibiotic for MG at MSHC, surpassing azithromycin due to increasing MRM

Efficacy is in decline:

- 2023 estimate of 79% is lowest reported MFX efficacy from MSHC
- 2015-23 estimate of 83% lower than Li's meta-analysis (100% 2003-09, 89% 2010-17)

“trigger point” for MRM assay (2006): **~75% AZI efficacy**
efficacy of moxifloxacin (2023): **79%**

Time for Next-Gen RGT?

MSHC's introduction of ParC assay in 2024 significantly reduced our use of moxifloxacin

Cure was significantly improved for confirmed ParC S83 wildtype infections

ParC assay shows great promise for MG management, but technology remains new and imperfect at this stage

Time for Next-Gen RGT?

MSHC's introduction of ParC assay in 2024 significantly reduced our use of moxifloxacin

Cure was significantly improved for confirmed ParC S83 wildtype infections

ParC assay shows great promise for MG management, but technology remains new and imperfect at this stage

for further investigation...

Previous MSHC study reported moxifloxacin cure $\geq 96\%$ for ParC wildtype⁵
Mutations to GyrA binding site? Other factors driving moxifloxacin failure?

How do we manage ParC S83I infections safely and effectively?

Acknowledgements

Honours Supervisors

Prof Cat Bradshaw &
Dr Lenka Vodstrcil

ASRH Conference

Organising Committee &
Attendees

Colleagues

Ms Natasha Wild
Dr Kay Htaik

Dr Erica Plummer
Ms Maggie Vandeleur
Dr Gerald Murray

Ms Ivette Aguire
Mr Rohit Sasidharan
Ms Asha Doolabh

MSHC
Clients & Staff

Sexual Health Society of Victoria
for supporting my attendance at ASRH

Sexual Health Society of Victoria Educational Support Grant

This presentation was supported by a Sexual Health Society of Victoria Educational Support Grant.

Interested in the SHSOV? Go to:
<http://shsov.org.au/membership/>

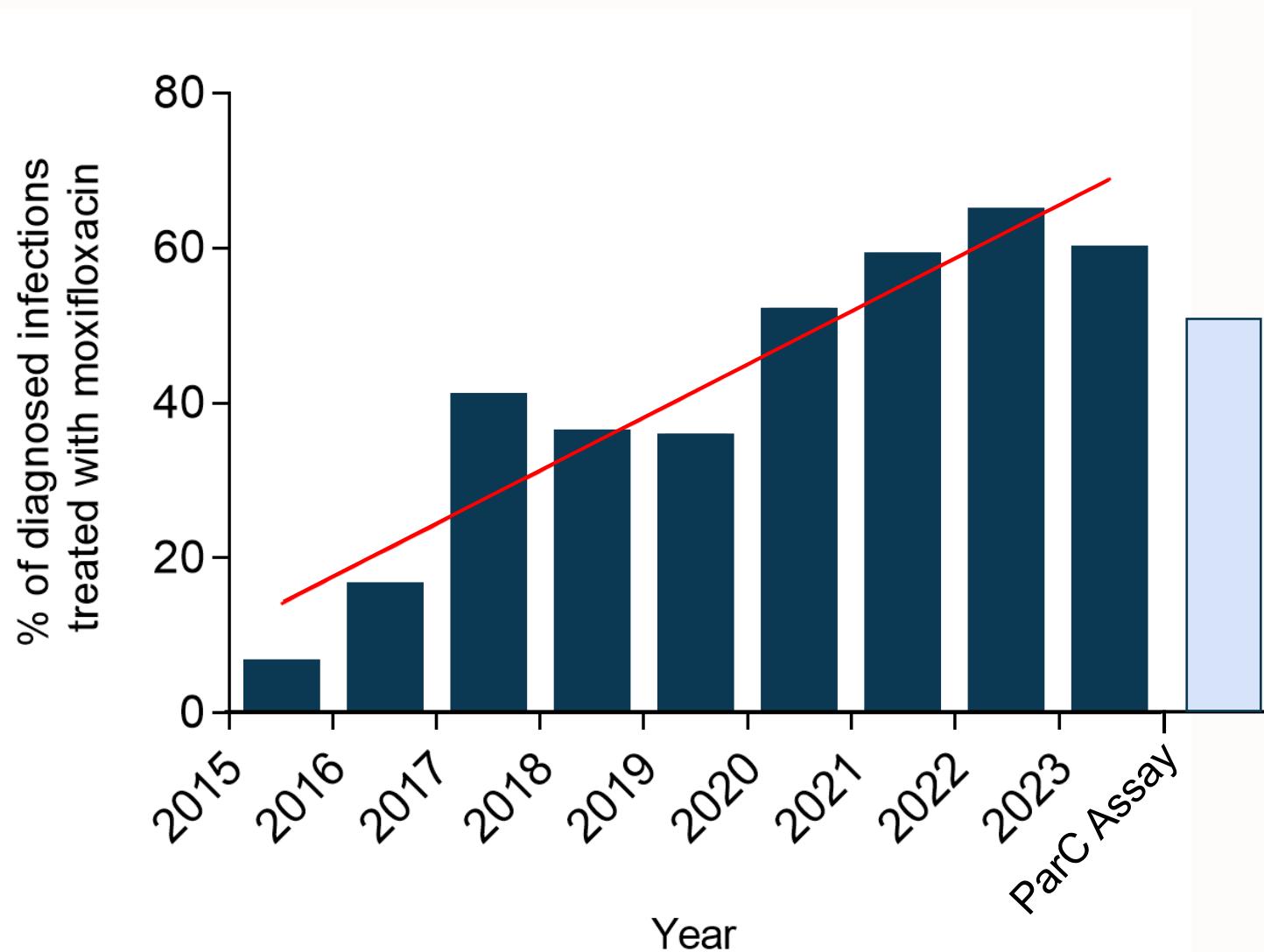
Contact

direct:

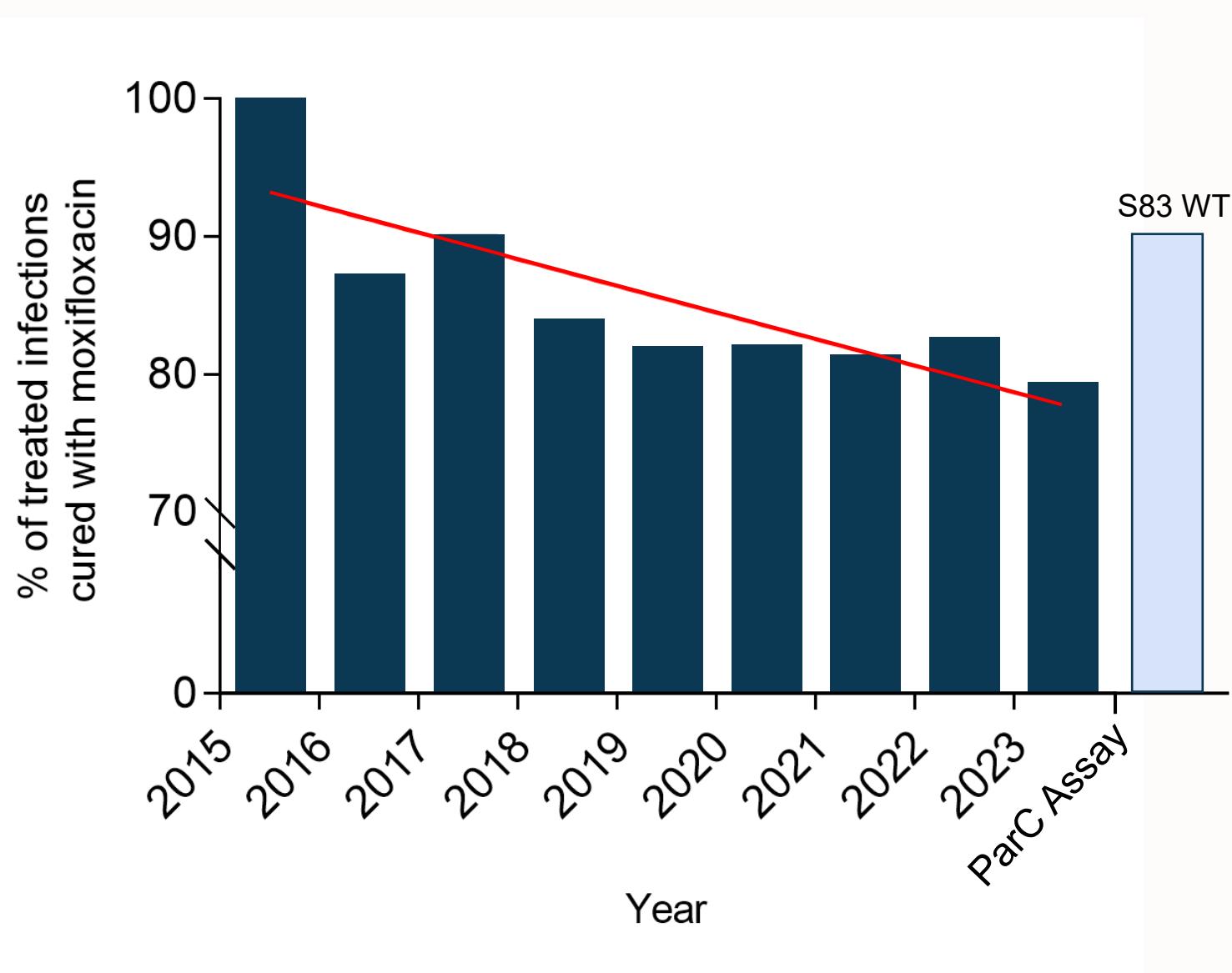
laura.grimminck@monash.edu

MG studies at MSHC:

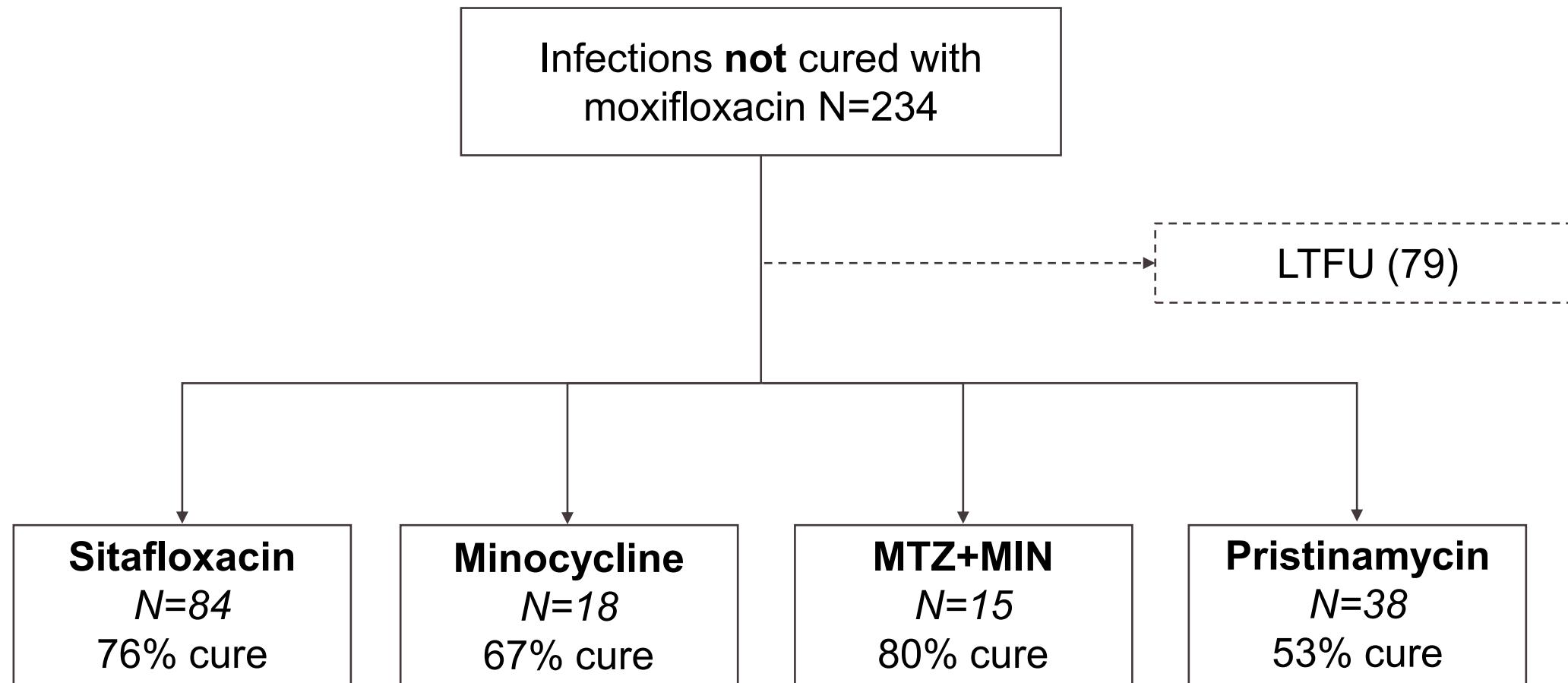
StopBV@mshc.org.au


supervisors:

catriona.bradshaw@monash.edu
lenka.vodstrcil@monash.edu


References

- [1] Jensen, J.S. & Bradshaw, C. (2015). Management of *Mycoplasma genitalium* infections – can we hit a moving target? *BMC Infect Dis* 15(343)
- [2] Htaik, K., et al., (2024). Systematic review and meta-analysis of the association between *Mycoplasma genitalium* and pelvic inflammatory disease (PID). *Clin Infect Dis*
- [3] Machalek, D.A., et al., (2020). Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in *Mycoplasma genitalium*: a systematic review and meta-analysis. *Lancet Infect Dis.* 20(11)
- [4] Li Y et al. (2017). Meta-analysis of the efficacy of moxifloxacin in treating *Mycoplasma genitalium* infection. *Int J STD AIDS.* 28(11)
- [5] Vodstrcil, L.A., et al., (2022). Combination Therapy for *Mycoplasma genitalium*, and New Insights Into the Utility of parC Mutant Detection to Improve Cure. *Clin Infect Dis,* 75(5)
- [6] Chua, T.P., et al., (2025). Evolving patterns of macrolide and fluoroquinolone resistance in *Mycoplasma genitalium*: an updated systematic review and meta-analysis. *Lancet Microbe* 6(7)


Moxifloxacin use by year

Moxifloxacin efficacy by year

Appendix: Secondary Outcomes

