

Country of birth as indicator for hepatitis C testing in a Sydney metropolitan sexual health service. Is it an effective strategy?

LAM M¹, VARMA R^{1,2}, BOURNE C^{1,2}, LADE C¹, RAY A¹

1. Sydney Sexual Health Centre, South-Eastern Sydney Local Health District; 2. The Kirby Institute, Sexual Health Program, University of New South Wales

Background

- National Hepatitis C (HCV) testing policy recommends testing migrants from high HCV prevalence regions; it is unclear how successfully this is implemented in sexual health services and if it identifies populations with HCV.
- Sydney Sexual Health Centre (SSHC) is the largest publicly funded sexual health service in NSW and provides care to a high proportion of culturally and linguistically diverse (CALD) people who may benefit from screening initiatives.

• Audit of HCV testing at SSHC in 2021: majority of HCV testing was in the context of HIV pre-exposure prophylaxis (PrEP) initiation and injecting drug use (IDU). In comparison, 31% of clients born in a high HCV prevalence country ever had testing.

Aims

To determine HCV prevalence in clients attending SSHC from high HCV prevalence countries

Methods

- Opt-out HCV testing was implemented in the electronic medical record over a 6-month period (November 2022-May 2023).
- Inclusion criteria

Clients from high HCV prevalence countries with no prior HCV testing in the previous 12 months				Clients who met inclusion criteria who had a positive HCV Ab test			
	2019-2020	2022-2023			2019-2020	2022-2023	
	N (%)	N (%)			N (%)	N (%)	
Gender				Gender			
Male	145 (87.3)	781 (73.0)	p<0.001	Male		6 (0.6)	p=0.27
Female	11 (6.6)	266 (24.8)		Female	0 (0.0)	2 (0.2)	
	``	· · · · ·		Test result			
TGD	4 (2.4)	21 (1.96)		HCV Ab	4 (2.5)	8 (0.8)	p=0.04
PrEP in the				positive			•
last 3 months				HCV RNA		0 (0.0)	p=0.14
Yes	42 (25.3)	183 (17.1)	p<0.001	positive	x 7	0 (0.0)	p=0.14
No	98 (59.0)	855 (80.0)		PrEP in the last			

- No prior testing in the previous 12 months
- Born in 1 of 33 high HCV prevalence countries \bullet as defined by absolute number of HCV infections and HCV RNA prevalence >2%
- Testing data was compared to the same period in 2019-2020.
- Data analysis: X² univariate analysis (p<0.05).

Yes 1 (0.6) 1 (0.1) p=0.06 Positive 28 (16.9) 31 (2.9) p<0.001 No 0 (0.0) 6 (0.6) Negative 134 (80.7) 1027 (96.0) HIV status IDU in last 12 Positive 3 (1.9) 1 (0.1) p=0.03 months Negative 1 (0.6) 7 (0.7) Yes IDU in last 12 4 (2.4) 11 (1.0) p=0.13 162 (97.6) 1059 (99.0) No months CSW in last 12 Yes 0 (0.0) 0 (0.0) No months 4 (2.5) 8 (0.7) CSW in last 12 Yes 182 (17.0) p=0.02 16 (9.6) months No 150 (90.3) 880 (82.2) Yes 0 (0.0) 1 (0.1) p=0.46 No 4 (2.5) 7 (0.7)

3 months

Results

- 194% increase in HCV testing overall (2324 tests in 2022-2023 compared to 1070 tests in 2019-2020)
- 46.0% (1070/2324) of tests in 2022-2023 were clients from high HCV prevalence countries who never had an HCV test in the last 12 months compared to 20.3% (160/790) in 2019-2020.

HIV status

Most clients were from China (11.9%), Brazil (5.1%) and Indonesia (4.4%). •

- 8 (0.8%) clients had a positive HCV antibody (Ab) test; HCV RNA was not detected in all cases.
 - 1 reported history of past treated HCV, 2 reported history of past cleared HCV without treatment; 1 had HIV, 1 had HBV; 1 was on PrEP; 2 had no additional HCV risk factors.
 - 6 were men who have sex with men (MSM)

Conclusions

- Implementation of opt-out HCV testing increased HCV testing in patients attending SSHC from high HCV \bullet prevalence countries; however, it did not increase detection of newly identified HCV infections in this group.
- This single site study may not be reflective of populations attending other sexual health services; larger scale studies will be needed to assess this testing strategy in people attending sexual health services.

E: melissa.lam@health.nsw.gov.au; P: 02 9382 7440; W: www.sshc.org.au; Level 3, Nightingale Wing, Sydney Hospital, Macquarie Street, Sydney, NSW, 2000

