8/23/2018

The Potential Impact of a Cure for Chronic Hepatitis B Infection

A population Health and Economic Analysis in Australia

Mehlika Toy

11th Australasian Viral Hepatitis Conference Adelaide, Australia 2018

Stanford University

Previous Modelling for Chronic Hepatitis B Infection

Cost-Effectiveness Analysis

- CEA is a method to evaluate the outcomes and costs of interventions designed to improve health
- Help decision maker determine how to allocate resources
- Who is the target audience for the study?

Influence an opinion on a subject or add the weight of information on an intervention

Practice guidelines that may be influenced by a CEA, but eventually physicians and patients who make the decision

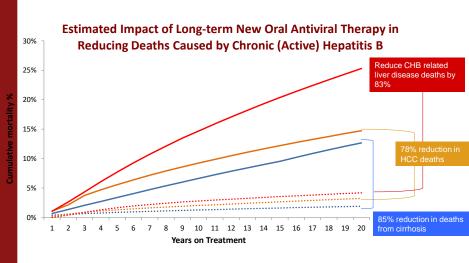
Stanford University

Cost-Effective or Cost-Saving

Cost-effective ≠ cost savings

Cost-effective ≠ affordable

- "**Cost-effective**" implies that we are willing to spend additional money to gain additional health benefits
- "**Cost-saving**" implies that we will gain health benefits by implementing the intervention, and we will save money as well


WHO Definition of Cost-Effectiveness

Intervention/treatment is considered Highly Cost-Effective: Cost is less than 1x GDP per capita for 1 QALY

In Australia< 49,927 USD (67,259 AUD)/QALY In the US, < 57,466 USD/QALY In China, < 8,123 USD (55,421 RMB)/QALY

WHO-CHOICE. Choosing interventions that are cost effective World Bank 2012 GDP per capita, http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD

Stanford University

Toy, M et al. Hepatology 2014;60(1):46-55

Aim

Model the potential population health impact and cost of a potential cure for chronic hepatitis B in Australia.

Determine the threshold where the drug cost becomes costsaving for the population.

Stanford University

Vision of ICE-HBV

ICE-HBV aims to fast-track the discovery of a safe, effective, affordable and scalable cure to benefit all people living with CHB, including children and people living with HCV, HDV and HIV co-infection. ICE-HBV intends to contribute to the elimination of CHB as a global public health challenge

- Goal 1 Generate knowledge, foster collaborations, and perform research to accelerate scientific innovation, in collaboration with key stakeholders.
- Goal 2 Disseminate knowledge and engage key stakeholders to ensure the timely translation of discoveries into positive health outcomes and quality of life.
- **Goal 3** Support a sustainable international multidisciplinary scientific coalition to find a cure for HBV and HDV infection.

Source: Dr. Peter Revill, Doherty Institute, ICE-HBV

Poll Question

Having a potential cure for chronic hepatitis B we could?

- a) Increase quality of life and prevent unnecessary premature deaths
- b) Decrease costs
- c) Both a and b
- d) We already have indefinite antiviral treatment, we don't need a cure

Markov Model and Disease Progression Estimates

- Adapted from a Markov Model for the United States
- Probabilities for age and disease specific rates were taken from recent meta-analysis and systematic review Thiele et al. PLoS One 2014 Rafetti et al. Liver International 2016
- Background mortality Australia
- Liver Transplantation Rates Australia
- Costs Chronic Hepatitis B management and treatment

Study Cohort

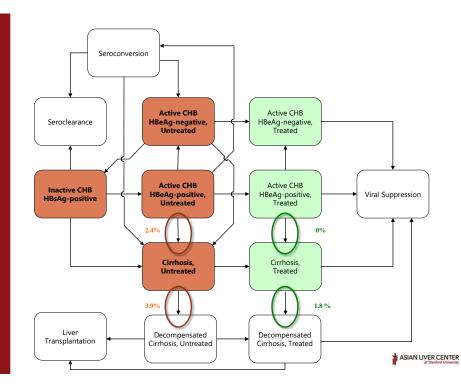
- 2018 population from previous modeling study (Doherty Institute)
- Age-specific HBsAg prevalence
- Prevalence of inactive hepatitis, HBeAg +/- active hepatitis and cirrhosis (from US data and Doherty Institute)
- · Assumptions: Start with eligibility from current treatment guidelines

Stanford University

When is Conventional Antiviral Treatment Needed?

✓ Antiviral treatment is needed if the person has evidence of active liver damage or cirrhosis.

✓ First line antivirals:


- Entecavir (0.5 mg/day)
- Tenofovir (TDF 300 mg/day, or TAF 25 mg/day)

Cost and Utilities

Variable	Base Case	Range			
Cost (AUD dollars) \$					
Antiviral drug	\$ 3,124	3124-5036			
Total Annual monitoring	\$ 594	476-712			
Chronic Hepatitis B	\$ 152	122-182			
Cirrhosis	\$ 1,760	1408-2112			
Decompensated cirrhosis	\$ 31,707	25366-38048			
Hepatocellular carcinoma	\$ 20,633	16507-24759			
Hepatocellular carcinoma surveillance	\$ 1,760	1408-2112			
Liver Transplantation 1st year	\$ 285,083	228067-342099			
Liver Transplantation 2nd year	\$ 45,726	36581-54871			
Health State Utilities					
uActive CHB	0.89	(0.80-0.92)			
uCirrhosis	0.87	(0.78-0.88)			
ulnactive CHB	0.95	(0.90-0.99)			
uDecompensated cirrhosis	0.82	(0.49-0.82)			
uHepatocellular carcinoma	0.84	(0.77-0.85)			
uLiver Transplantation	0.86	(0.72-0.84)			
uSeroclearance	0.99	(0.95-1.00)			
uPartial cure	0.99	(0.95-1.00)			
uFunctional cure	1.00	(0.95-1.00)			
uViral suppression	1.00	(0.95-1.00)			

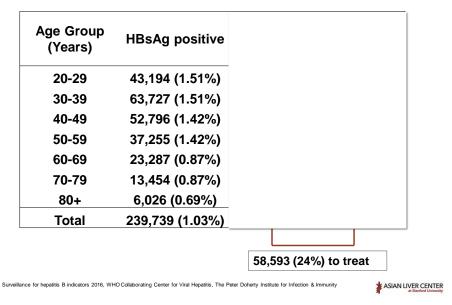
Medicare (MBS) & the Pharmaceutical Benefits Scheme (PBS) data Chinnaratha et al. 2016, journal of gastroenterology & hepatology Subramaniam et al. 2012, Internal Medicine Journal

Functional Cure

- Sustained undetectable HBsAg and HBV DNA in serum with or without seroconversion after completing a 24 week of treatment and decrease risk of HCC.
- Where HBV is reduced to permanently harmless levels after stopping treatment, but some residual virus may still be present in the body.

Partial Cure

Detectable HBsAg but persistently undetectable HBV DNA in serum after completion of a finite 24 week course of treatment


Lok et al. Hepatitis B cure: from discovery to regulatory approval, 2017 Journal of Hepatology www.who.int/hepatitis/news-events/hby-cure-overview/en/

ASIAN LIVER CENTER

Scenario Analysis

Scenario	Rx	Rx duration	Effectiveness	Monitoring	Costs	Starting eligibility
Current Practice	Conventional first line therapy, ETV or TDF	Indefinite	Viral Supression Seroclearance	vear, HCC surveillance	ETV generic: AUD\$ 3,124 TDF: AUD\$ 5,036 Monitoring: AUD\$ 594, HCC surveillnce: AUD \$1760	 Active e-positive. Active e-negative Cirrhosis
	Cure, new hypothetical drug	24 weeks	Seroclearance Tested success	stopping	Range AUD\$ 13,000-59,000 Monitoring: AUD\$ 297	 Active e-positive. Active e-negative Cirrhosis
Functional Cure	Cure, new hypothetical drug	24 weeks		ongoing care, Cirrhosis surveillance	Range AUD\$ 13,000-75,000 Monitoring: AUD\$ 297 only during cure treatment	 Active e-positive. Active e-negative Cirrhosis

Population Level Prevalence of CHB in Australia by Age and Disease Status among Adults

Poll Question

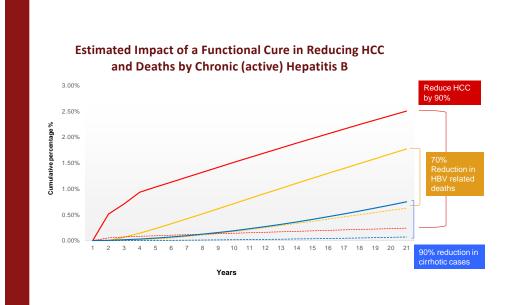
- How much do you think the potential cure drug needs to cost in order to be cost-saving (more effective and less costly compared to the current practice)?
- a) Between AUD\$ 13,000- \$35,000
- b) Between AUD\$ 45,000- \$90,000
- c) More than AUD\$100,000

Sub-Group Specific Cost Outcomes

Cost-Saving	g			
	Drug success rate	50%	70%	90%
Cirrhosis	Functional Cure	< AUD\$ 21,000	< AUD\$ 30,000	< AUD\$ 35,000
	Partial Cure	< AUD\$ 13,000	< AUD\$ 18,000	< AUD\$ 23,000
CHB only	FC and PC	< AUD\$ 13,000	< AUD\$ 18,000	< AUD\$ 23,000
Highly Cos	t-Effective (GDP per	capita < \$ 50,000	per QALY)	
Highly Cos	t-Effective (GDP per Drug success rate	•	per QALY) 70%	90%
Highly Cost Cirrhosis		•	. ,	90% < AUD\$ 75,000
	Drug success rate	50%	70%	-
	Drug success rate Functional Cure	50% < AUD\$ 43,000	70% < AUD\$ 60,000	< AUD\$ 75,000
Cirrhosis	Drug success rate Functional Cure Partial Cure	50% < AUD\$ 43,000 < AUD\$ 33,000	70% < AUD\$ 60,000 < AUD\$ 45,000	< AUD\$ 75,000 < AUD\$ 59,000

Aggregated Population Results

Functio	ona	al cure		50%				70%					90%			
Outcome	,	cs	HCE	Cirrhosis	нсс	HBV- Deaths	cs	HCE	Cirrhosis	нсс	HBV- Deaths	cs	HCE	Cirrhosis	нсс	HBV- Deaths
10 years	\$	15,195	\$ 22,260	38	643	916	\$ 20,977	\$ 31,127	23	386	589	\$ 26,758	\$ 39,995	8	129	263
20 years	\$	23,709	\$ 39,250	138	997	1,681	\$ 33,203	\$ 54,399	83	598	1,131	\$ 42,697	\$ 69,549	28	199	580
Lifetime	\$	32,337	\$ 58,747	461	1,460	2,669	\$ 45,531	\$ 81,415	276	876	1,890	\$ 58,726	\$ 104,084	92	29-	1,111
Partial	cu	re		50%					70%					90%		$\overline{\ }$
Outcome	,	cs	HCE	Cirrhosis	нсс	HBV- Deaths	CS	HCE	Cirrhosis	нсс	HBV- Deaths	cs	HCE	Cirrhosis	нсс	HBV- Deaths
10 years	\$	14,011	\$ 19,018	38	643	956	\$ 18,774	\$ 26,044	23	386	646	\$ 23,538	\$ 33,071	8	129	336
20 years	\$	21,111	\$ 32,827	138	997	1,805	\$ 29,021	\$ 44,863	83	598	1,304	\$ 36,931	\$ 56,900	28	199	803
Lifetime	\$	28,696	\$ 48,458	461	1,460	2,964	\$ 39,891	\$ 66,467	276	876	2,302	\$ 51,086	\$ 84,476	92	292	1,641


Current Practice										
			HBV-							
Outcome	Cirrhosis	HCC	Deaths							
10 years	92	1,377	1,900							
20 years	302	2,067	3,195							
Lifetime	960	2,982	4,730							

HCC: (2067-199)/2067= 1868/2067= **90%**

Death: (3195-580)/3195= 2615/3195= **82%**

Poll Question

- With a potential cure and access to treatment for all could we reach the World Health Organization's target of decreasing 65% of CHB deaths earlier than 2030?
- a) Yes, by making sure no one is left behind
- a) Maybe
- b) No, I don't think so

Conclusion

- A potential functional cure can save 90% of HCC cases and 82% of HBV related death cases compared to conservative antiviral treatment (current practice).
- In Australia, a 90% effective functional cure cost can range between \$23,000-35,000 for it to be cost-saving and range between \$27,000-75,000 for it to be highly cost-effective.

ASIAN LIVER CENTER

Poll Question

Would finding a cure for chronic hepatitis B that is "cost-saving" make sure that "no one is left behind"?

a) Yes

b) No

Benjamin Cowie Doherty Institute

- David Hutton University of Michigan
- Karen McCulloch
 Doherty Institute
- Nicole Romero
 Doherty Institute
- Samuel So Stanford University
- Peter Revill Doherty Institute ICE-HBV
- Capucine Penicaud Doherty Institute ICE-HBV

ASIAN LIVER CENTER

Kangaroo Island, South Australia