FCF RECEPTOR BINDING BREADTH OF RV144 ANTIBODIES

Chung AW¹, McLean MW¹, Madhavi V¹, Wines BD^{2,3,4}, Hogarth PM^{2,3,4}, Kent SJ^{1,5,6}

¹ Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne

²Centre for Biomedical Research, Burnet Institute

³ Department of Immunology, Monash University Central Clinical School

⁴ Department of Pathology, The University of Melbourne

⁵ Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central

Clinical School, Monash University

⁶ ARC Centre of Excellence in Convergent Bio-Nano Science and Technology

Background: Immune correlates analysis of the partially protective RV144 vaccine trial identified antibodies that recognize the V1V2 region as a correlate of protection, while Antibody dependent cellular cytotoxicity (ADCC) responses was a secondary correlate of protection. Thus understanding the protective mechanisms behind V1V2 antibodies, along with ADCC responses are of growing interest in the HIV vaccine field.

Methods: We developed an ELISA and multiplex assay to model the cross-linking of Fc γ -receptors (Fc γ R) by antibodies which is required to initiate an ADCC response. The high-throughput multiplex assay allowed us to simultaneously measure Fc γ R dimer binding antibodies to 32 different HIV antigens across 7 different HIV-1 clades, providing a measure of the breadth of Fc γ R-binding antibodies induced by the RV144 trial. RV144 plasma samples were also profiled for their IgG subclasses and functional ADCC activity.

Results: The FcyR dimer binding antibodies induced by the RV144 regimen correlated well with functional ADCC assays as well as IgG subclasses. FcyR-binding antibodies specific to V1V2 were strongly associated with increased breadth of recognition of different Env proteins.

Conclusions: Taken together our results describe a robust high throughput assay to predict ADCC responses. This $Fc\gamma R$ dimer binding multiplex assay has the potential to screen large panels of HIV proteins for ADCC breadth and reduce the need to run cell-based assays for the early recognition of ADCC functional antibodies, thus accelerating the identification of immune responses that may contribute to an effective HIV-1 vaccine. In addition, we further characterize the immunity of the RV144 trial, suggesting that the anti-V1V2 antibodies induced by RV144 may be a marker of increased ADCC breadth.