Routine treatment of chlamydia and gonorrhoea sexual contacts attending Sexual Health Services: Is immediate treatment necessary?

Linda Garton^{1,2}, Emma Field², Handan Wand³, Rebecca Guy³, Tobias Vickers^{3,5}, Denton Callander^{3,4}, Allison Carter³, Anna McNulty⁵, Basil Donovan^{3,5}, David J. Templeton^{1,3,6}, on behalf of the ACCESS collaboration.

Affiliations: ¹Sexual Health Service, Community Health, Sydney Local Health District, Camperdown, NSW, Australia, ²National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia,³The Kirby Institute, UNSW Sydney, Sydney, NSW, Australia, ⁴Spatial Epidemiology Lab, New York University, New York, NY, USA,⁵Sydney Sexual Health Centre, Sydney, NSW, Australia, ⁶Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.

Introduction

 Treating sexual contacts immediately is recommended in guidelines

Sexually Transmitted Disease (STD) Contact Tracing

What?


W hat: Sexually Transmitted Disease (STD) contact tracing is the notification of sexual partner(s) of individuals deproved with a sexually transmitted disease including HVAIDS. The partner(s) are torial should be yield and/or inspect. This is a core public health duy carried out by health departments across the United States and can be anonymous or confidential; sexual partner(s) are not told who referend then.

Why? • Health departments can make sure patients and partner(s) get the right tests and treatments • Treation partners can prevent

Treating partners can prevent reinfection and prevent further disease transmission and complications. Contract training can decrease the overall number of STDs in the community

Who? Densate Intro-Densate Introtion Real department employees performing this role although other staff and community based organizations may as well DIS conduct information on sexual pathnet(s). DIS are the information on sexual pathnet(s). DIS are the and serve the most critical role in the reporting and controlling the oddskit spread of STDs and HV, as well as, heaptits and tuberculositis.



Introduction

 Increasing azithromycin resistance and reported ceftriaxone resistance

 Study aim: assess CT and NG positivity among sexual contacts to determine if guidelines recommending immediate treatment is still warranted

Home / Newsroom / Detail / Antibiotic-resistant gonorrhoea on the rise, new drugs needed

Antibiotic-resistant gonorrhoea on the rise, new drugs needed

7 July 2017 | News release | GENEVA

Methods

Australian Collaboration for Coordinated Enhanced Sentinel Surveillance of Sexually Transmitted Infections and Blood Borne Viruses

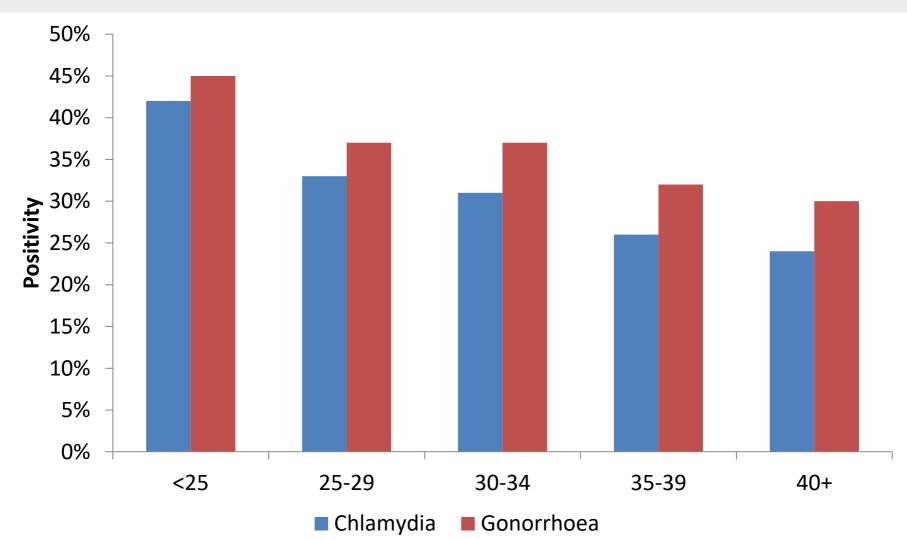
- Retrospective observational cohort study
- De-identified demographic & STI data
- 1 January 2013 to 31 December 2017
- ACCESS project database
- 9 clinics, 83% urban
- Inclusion criteria:
 - Sexual contact recorded as reason for attendance
 - Treatment data collected electronically

Methods

- Demographic and behavioural risk factors assessed:
 - Gender, age group, sexual preference, symptoms, sex worker status, geographical location
 - Treatment data used to determine whether a contact was attending for CT or NG exposure
 - Repeated measures model used to assess demographic and risk behaviour characteristics

Results

- 16836 episodes (4.1%) recorded for contact as a reason for attendance
- Median age:
 - Females: 23 years (IQR: 20-28)
 - Males: 28 years (IQR: 23-35)
- Overall CT positivity in contacts: 34.4% (n=2820)
- Overall NG positivity in contacts: 37.3% (n=1376)



Results: characteristics associated with CT and NG positivity in contacts

	CT positivity n (%)	NG positivity n (%)	
Gender			
Male	1973 (32.0)	1232 (36.2)	
Female	847 (41.5)	144 (49.5)	
Among male			
GBM	823 (27.4)	1169 (37.3)	
Heterosexual	1139 (36.5)	62 (23.5)	
Symptoms			
Yes	671 (38.8)	371 (40.7)	
No	569 (38.0)	285 (35.6)	
Location			
Urban	2441 (33.7)	1254 (37.4)	
Non Urban	379 (40.5)	122 (35.8)	
Sex worker			
Yes	34 (33.3)	28 (51.9)	
No	2786 (34.4)	1348 (37.0)	

CT and NG positivity in contacts by age group

CT positivity in contacts

Category	Unadjusted OR (95% CI)	P-value	Adjusted OR	P-value
Gender Male Female	Reference 1.50 (1.34-1.67)	<0.001	-	-
Age group <25 25-29 30-34 35-39 ≥40	2.34 (1.96-2.78) 1.57 (1.31-1.88) 1.40 (1.15-1.72) 1.13 (0.90-1.43) Reference	<0.001	1.86 (1.52-2.27) 1.38 (1.13-1.68) 1.31 (1.05-1.63) 1.01 (0.79-1.30)	<0.001
Among male GBM Heterosexual	Reference 1.36-1.70)	<0.001	1.35 (1.20-1.31)	<0.001
Location Urban Non Urban	Reference 1.35 (1.16-1.54)	<0.001	1.14 (0.64-1.35)	0.147
Symptoms No Yes	Reference 1.08 (0.90-1.20)	0.603	-	-

NG positivity in contacts

Category	Unadjusted OR (95% Cl)	P-value	Adjusted OR	P-value
Gender Male Female	Reference 1.71 (1.34-2.18)	<0.001	-	-
Age group 20-24 25-29 30-34 35-39 ≥40	1.89 (1.53-2.34) 1.39 (1.27-1.72) 1.36 (1.08-1.72) 1.12 (0.84-1.46) Reference	<0.001	1.80 (1.31-2.48) 1.14 (0.82-1.59) 1.36 (0.97-1.96) 0.44 (0.60-1.42) Reference	<0.001
Among male GBM Heterosexual	1.96 (1.45-2.61) Reference	<0.001	1.65 (1.14-2.44)	0.009
Location Urban Non Urban	1.07 (0.86-1.36) Reference	0.524	-	-
Symptoms No Yes	Reference 1.25 (1.02-1.52)	0.029	1.30 (1.04-1.60)	0.019

Conclusion

- More than 60% of contacts were negative for CT and NG
- Some differences in positivity by gender, age, sexual preference
- GBM overall positivity for CT or NG <40%
- Strongest association for both infections was being aged less than 25 years

Limitations

- Several large clinics excluded from the study e.g. no treatment data unavailable
- Regional breakdown was modified several clinics excluded
- Some risk factor categories not included
- Unable to identify if symptoms were related to diagnosis

Conclusion

- Findings support a test-and-wait approach for contacts
- Some sexual health clinics already introduced the model
- Operational research warranted in different settings and populations to confirm all contacts will return for treatment

Acknowledgements

- ACCESS is a collaboration between the Burnet Institute, Kirby Institute and National Reference Laboratory.
- ACCESS is funded by the Australian Department of Health. ACCESS also receives funding from specific states and studies, including EC Victoria and EC Australia.
- We thank all clinics participating in ACCESS, including the site investigators who contributed data to this analysis and acknowledge the contribution of the ACCESS Team members:

Jason Asselin, Burnet Institute; Lisa Bastian, WA Health; Deborah Bateson, Family Planning NSW; Scott Bowden, Doherty Institute; Mark Boyd, University of Adelaide; Denton Callander, Kirby Institute, UNSW Sydney; Allison Carter, Kirby Institute, UNSW Sydney; Aaron Cogle, National Association of People with HIV Australia; Wayne Dimech, NRL; Basil Donovan, Kirby Institute, UNSW Sydney; Carol El-Hayek, Burnet Institute; Jeanne Ellard, Australian Federation of AIDS Organisations; Kit Fairley, Melbourne Sexual Health Centre; Rebecca Guy, Kirby Institute, UNSW Sydney; Margaret Hellard, Burnet Institute; Jane Hocking, University of Melbourne; Jules Kim, Scarlet Alliance; Scott McGill, Australasian Society for HIV Medicine; David Nolan, Royal Perth Hospital; PritalPatel, Kirby Institute, UNSW Sydney; Stella Pendle, Australian Clinical Laboratories; Philip Reed, Kirkton Road Centre; Norm Roth, Prahran Market Clinic; Nathan Ryder, NSW Sexual Health Service Directors; Christine Selvey, NSW Ministry of Health; Nicola Stephens, Victorian Department of Health; Mark Stoové, Burnet Institute; Helen Tyrrell, Hepatitis Australia; Toby Vickers, Kirby Institute, UNSW Sydney; Melanie Walker, Australian Injecting and Illicit Drug Users League; Michael West, Victorian Department of Health

