

Ultimately, this is intertwined with the socio-political environment of "The Intervention"

Context: why?

Approach to Menzies from Northern Territory Government, Sexual Assault Referral Centre (SARC)

- Clinical examination of possible abuse victims
- Advise child protection and law enforcement authorities

SARC's question:

- If UGT Chlamydia trachomatis detection in children, no "disclosure":
- What advice to police and child protection service providers??
- "the presence of an STI in a preadolescent is most likely the result of sexual abuse and formal assessment should always be initiated"
- What does "most likely" mean, numerically?

Matters because:

- Error mode 1: a child may remain in danger
- Error mode 2: groundless investigation and stigmatisation of individual/family/community.
- Perhaps most importantly: with this fraught issue, numerical transparency based on evidence is a virtue in itself.

Context: how?

If "sexual abuse" is inferred from presence of STI....

- STI test is a diagnostic test for sexual contact
- Positive diagnostic test in absence of sexual contact: False positive

"Conceivable mechanisms" of false positivity tested experimentally to determine frequency.

- "Conceivable mechanisms" <u>defined by front-line clinicians</u>, not Menzies researchers
- Our "Mythbusters" approach

Outputs: confidence limits on false positive frequencies

Ultimate aim: PPV of a positive STI test in a young child for sexual contact

The first (we think) C. trachomatis self contamination-based experiment

The "myth" for this study:

"Contamination of urine specimens during collection process by transfer of STI material from carer's STI agent contaminated fingers to the inside of a urine collection jar"

plausible or busted?:

To address this:

Members of the research team deliberately contaminated their un-gloved fingers with live *C. trachomatis.*

Experimental details

Variables

- Three C. trachomatis isolates
 - OmpA genotypes B, E, F
 - Grown in McCoy cell, EBs purified
- Two contamination methods (dip and pour)
- Three participants
 - Members of research team
- Diluent: artificial urine surrogate
- Fingers dried with paper towel between contact with *Chlamydia* dilution and test specimen
- Nine page SOP...

Experimental details (Cont.)

- Timing
 - Experimentation on three days, all two weeks apart
 - Each day: 1 X C. trachomatis strain, 3 X participants, 2 X transfer methods.
 - One transfer method (dip or pour) per hand

• Decontamination and controls

- Hand wash before experimentation
- Dip or pour after this wash and before finger contamination
- Hand wash after experimentation
- Post-wash "dipping" specimens
- QPCR: Roche COBAS 4800CT/NG
- Data analysis
 - Cq values excluded: \geq 40, and when C. trachomatis DNA not detected in more concentrated equivalents

Di Martino et al 2003. Can J. Microbiol. 49:443-449

All results looked very like this

Where C. trachomatis was detectable in contaminated specimen ..:

- C. trachomatis dilution vs corresponding contaminated specimen: ~10 PCR cycle difference
- ~210=1024-fold difference in C. trachomatis load
- ~10 µl of EB suspension transferred.

Numerical results

Category (n)	Mean ∆Cq (SD)	∆Cq range	Mean µL transferred (inferred from±2x∆Cq SD range)(inferred from observed ∆Cq range)		
All (49)	10.0 (1.6)	6.7-13.3	9.8 (1.1-89.7)(1.0-96.2)		
Participant 1 (17)	8.8 (0.9)	6.7-9.8	22.4 (6.4-78.1)(11.2-96.2)	p<0.0001*	
Participant 2 (16)	10.5 (1.2)	8.6-13.0	7.1 (1.4-32.6)(1.2-25.8)	Participant 1 vs participant 2: p<0.01†	
Participant 3 (16)	10.9 (1.6)	7.7–13.3	5.2 (0.6-48.1)(1.0-48.1)	Participant 1 vs participant 3: p<0.01† Participant 2 vs participant 3: not significant	
Dipping (23)	10.6 (1.7)	7.4-13.3	6.4 (0.6-68.0)(1.0-59.2)	p=0.015‡	
Pouring (26)	9.5 (1.3)	6.7-12.4	13.8 (2.3-83.7)(1.0-96.2)		
E_Aus56 (17)	9.7 (1.6)	6.7-12.2	12.0 (1.3-110.5)(2.1-96.2)	Not significant; p=0.41*	
F_Aus51 (15)	10.0 (1.6)	7.4-13.3	9.8 (1.1-89.8)(1.0-59.2)		
B_Aus45 (17)	10.4 (1.5)	8.4-13.0	7.4 (0.9-59.2)(1.2-29.6)		
Undiluted (18)	9.4 (1.7)	6.7-12	14.8 (1.4-156.3)(2.4-96.2)	p=0.004*	
10 ⁻² diluted (18)	11.0 (1.5)	9.0-13.3	4.8 (0.6-39.1)(1.0-19.5)	10^{0} vs 10^{-2} : p<0.01† 10^{0} vs 10^{-4} : not significant† 10^{2} vs 10^{-4} : p<0.05†	
10 ⁻⁴ diluted (13)	9.5 (1.0)	7.7-11.1	13.8 (3.5-55.2)(4.6-48.1)		

The 49 data points were collated according to different criteria to reveal possible correlates. This encompasses data only from specimens that yielded a positive C.

*One way analysis of variance. †Tukey HSD.

+t-test (two tailed).

- Statistically significant differences between: Participants
- Method
- Dilutions
- BUT
- Magnitudes small
- · We cannot see any translational implications of these differences

Numerical results (continued)

Effect of post-experimental hand-washing on <i>C. trachomatis</i> DNA load on fingers	Post decontamination specimen	ΔCq	Reduction in C. trachomatis DNA
5	1	10.3	1261
Hand washing	2	11.1	2195
nanu washing.	3	14.8	28526
 Wash With Avagard 9230-D (hand and body wash) 	4	9.2	588
	5	8.2	294
Rinse with water	6	7.7	208
Rinse with Avagard 9250 P (0.5%	7	9.2	588
chlorhexidine gluconate in 70%	8	10.4	1351
ethanol)	9	6.4	85
	10	8.3	315
Reduction was ~1000X but quite variable	11	11.4	2702
Inferred range: 85-28526X	12	10.7	1664
	13	13.3	10086
	14	9.5	724
	15	12.6	6208
	16	10.8	1783
	17	11.4	2702
	Mean (SD)	10.3 (2.1)	1261

1. Does urine ever have enough *C. trachomatis* DNA to underpin this mechanism of specimen contamination?

- The highest Cq (lowest DNA load) for a positive test: Cq = ~40
- ΔCq from our experiments = ~10
- Any urine with enough DNA to provide a Cq of ≤40-10=30 could underpin this contamination mechanism
- Snapshot of 30 actual C. trachomatis positive urine specimens from • collaborators:
 - 6/30=20% gave Cq≤30

Conclusion: A significant minority of actual C. trachomatis positive urine specimens could underpin this mechanism of contamination.

Implications

- 2. Do clinical guidelines foreshadow this mode of specimen contamination?
- No!
- Universally:
 - Guidelines for mid-stream urine collection (e.g. for UTI test) DO incorporate precautions against specimen contamination
 - Guidelines for first stream urine collection (for STI testing) DO NOT incorporate guidelines against specimen contamination
 - Presumably mind-set that specimen is already contaminated
 - Possibility of exogenous contamination of first stream urine is not considered
- Conclusions
 - Recommend extending the simple anti-contamination precautions for mid-stream urine collection to first stream urine collection.
 - Perhaps urine specimens from children for STI testing should not be collected by carer alone.

NHMRC project grant 1060768.

NHMRC Career Development Fellowship 1065736 (Steven Tong).