ULTRASENSITIVE ASSAY TARGETING HIV-1 PROMOTER REGION DETECTS VIRAL INTRACELLULAR ACTIVITY IN BLIP EXPERIENCED PATIENTS ON ART FROM DRIED BLOOD SPOTS

Authors:

<u>Starr M¹</u>, Levert A¹, Butterly S¹, Kelly A¹, Yoo E¹, Zaunders J^{1,2}, McNally L¹, Ishida T³, Brew B^{4,5,6,7}, Cunningham P^{1,2}, Suzuki K¹

¹St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV, St Vincent's Hospital, Sydney, NSW, Australia, ²The Kirby Institute ³Denka Co. Ltd, Tokyo, Japan, ⁴Departments of Neurology, St Vincent's Hospital, Sydney, NSW, Australia, ⁵Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia, ⁶Department of HIV Medicine, St Vincent's Hospital, Sydney, NSW, Australia, ⁷St. Vincent's Clinical School, Delacy Building, University of New South Wales, Sydney, NSW, Australia

Background:

Dried Blood Spots (DBS) have been widely used in certain HIV clinical settings, including early infant diagnostics and drug resistance surveillance, as an alternative specimen type, for hard-to-reach populations and in resource limited settings. Although there are commercially available molecular assays that detect HIV-1 to low levels (<20cpy/mL) in venous clinically collected samples, there are limited commercially available and registered assays that utilse a DBS sample type. In this study we investigated detection sensitivity to identify presence of HIV-1 in DBS samples by comparing the GeneXpert system to our recently developed π Code assay.

Methods:

45 DBS samples were obtained from HIV positive patients virally suppressed on ART, comprising patients without recent blips (n= 21) and patients with blips (n= 24) (defined as two blips above 20-200 copy/mL within a 2-year period). DBS were tested on the GeneXpert HIV-1 qualitative assay and the π Code assay, targeting the highly conserved "R" region of the LTR.

Results:

HIV-1 was detected using the π Code assay and GeneXpert with an overall sensitivity of 93% and 43% respectively. Furthermore, the π Code assay detected HIV-1 in 100% of blip patients (n=21) and 88% for non-blip patients (n=24): the π Code assay failed to detect presence of HIV-1 with 12% (3 samples out of 24 DBSs). We did further analysis to investigate reasons of failure of HIV detection. We revealed those 3 non-blip samples had very low levels of CA-HIV-1 RNA transcripts and total HIV-1 DNA levels by our standard piCde analysis using 5ml of whole blood. Therefore HIV-1 detection on those 3 non-blip DBSs were difficult to identify the presence of HIV-1.

Conclusion:

Our study demonstrated that the π Code assay has a high sensitivity, compared with the GeneXpert system, to detect HIV-1 from DBS samples from virally suppressed patients. We identified a novel possibility to assess DBS for HIV treatment monitoring, although our study sample size needs to be increased to confirm our initial findings.

Disclosure of Interest Statement:

This study was supported by a St Vincent's Clinic Foundation Research Grant and AMR Translational Research Grant. KS receives research funds from Denka Co. Ltd.